

Drupal 7 Themes

Create new themes for your Drupal 7 site with a clean
layout and powerful CSS styling

Ric Shreves

 BIRMINGHAM - MUMBAI

Drupal 7 Themes

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Production Reference: 1190511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-76-3

www.packtpub.com

Cover Image by Faustino Perez (faustperez@yahoo.es)

Credits

Author
Ric Shreves

Reviewer
Sivaji Ganesh

Acquisition Editor
Sarah Cullington

Development Editor
Maitreya Bhakal

Technical Editors
Sakina Kaydawala

Prashant Macha

Manasi Poonthottam

Project Coordinator
Joel Goveya

Proofreader
Lynda Sliwoski

Indexer
Hemangini Bari

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Ric Shreves is one of the founding partners of water&stone, an interactive agency
that specializes in open source web content management systems. Ric has been
building CMS websites for over 10 years and during that time he has been involved
in projects for a number of global brands, including BASF, BearingPoint, Colgate-
Palmolive, Tesco Lotus, FPDSavills CBRichard Ellis, Mercy Corps, and many others.
Ric has published a number of books on open source in general and on open source
content management systems in particular. Past work includes books on Mambo,
Drupal, Joomla!, and Ubuntu. This is his third installment in the Drupal Themes series
for Packt Publishing.

Ric lives in Bali with his wife and business partner, Nalisa.

I would like to thank Packt for giving me the opportunity to be a
part of the Drupal Themes series; it's been a great experience for me
and has taught me a tremendous amount about Drupal—a system
for which I have ever-increasing admiration. Writing these books
takes a tremendous amount of time; it would not be possible without
the continuing support of my wife Nalisa, who keeps things running
smoothly at water&stone while I bang away on the keyboard, so I
dedicate this book to her and the entire water&stone team.

About the Reviewer

Sivaji Ganesh is one of the lead web developers at E-ndicus InfoTech Pvt Ltd, a
leading Drupal and OpenERP services providing organization based in Chennai.
At E-ndicus, he is responsible for requirements analysis, arriving at and providing
solutions, and building and maintaining websites primarily on Drupal.

In 2009, Sivaji started his Drupal evangelism as Google Summer of Code student.
There he worked on quiz module to improve its features and fix several bugs along
with other Drupal developers Matt Butcher, Falcon, Vegardjo, and Turadg. He is an
active member, who contributed to the community in terms of writing patches to
core and contributed modules. He has developed and maintains a few contributed
modules and themes on the Drupal official website http://drupal.org/. He has
reviewed a few other Drupal books for Packt Publishing, including Drupal 7 Module
Development. Sivaji's Drupal user account page can be found at http://drupal.org/
user/328724.

He holds a Bachelors Degree in Computer Science from Jaya Engineering College,
affiliated to Anna University, Chennai.

I would like to extend my sincere thanks to my family and
colleagues. Of course to everyone in the Drupal community, who
instilled a Drupal-inquisitive mind in me.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Learning the Basics of Drupal Theming	 7

The importance of themes in Drupal	 8
One template or many? It's up to you	 8
Get creative with configuration	 9
Intercept and override	 10
Sub-themes are your friends	 11

What is a theme?	 11
Official Drupal online resources	 12

What is a theme engine?	 13
The range and flexibility of Drupal themes	 13
The output of a Drupal theme	 15
The site administrator's view	 20
The default Drupal themes	 23

Bartik	 24
Garland	 26
Stark	 28

Theme files	 30
Summary	 33

Chapter 2: Working with the Default Configuration
and Display Options	 35

Configuring a theme	 36
Global Theme Configuration	 37

Toggle Display	 38
Logo Image Settings	 38
Shortcut Icon Settings	 40

Theme-Specific Configuration	 40
Controlling module and block visibility	 42

Table of Contents

[ii]

Introducing the Module Manager	 43
Introducing the Blocks Manager	 46
Configuring individual blocks	 49

Region Settings	 51
Visibility Settings	 51

Finding additional themes	 55
Installing an additional theme	 60

Automatic installation	 60
Manual installation 	 61

Uninstalling themes	 64
Summary	 65

Chapter 3: Understanding PHPTemplate Themes	 67
What is PHPTemplate?	 67
How does it all work?	 68
Key PHPTemplate theme files	 72

The role of the .info file	 73
The role of the page.tpl.php file	 74
Two contrasting examples	 78

A simple PHPTemplate theme–Seven	 79
A more complex PHPTemplate theme–Bartik	 80

Summary	 83
Chapter 4: Using Intercepts and Overrides	 85

Putting together the pieces	 86
Default templates	 86
Default stylesheets	 87
The themable functions	 88

Overriding the default CSS	 88
CSS overrides in action	 90
Overriding core stylesheets	 92

Overriding templates and themable
functions	 93

Various approaches to overriding the Default Styling	 93
Overriding templates	 94
Overriding functions	 97
Converting themable functions into dedicated templates	 98

Overrides in Action: A look at overrides in Bartik	 100
Overriding the default template files	 101
Overriding themable functions	 103

Working with template variables	 104
Intercepting and overriding variables	 105
Making new variables available	 106

Summary	 107

Table of Contents

[iii]

Chapter 5: Customizing an Existing Theme	 109
Setting up the workspace	 109
Planning the modifications	 112
Selecting a base theme	 114
Creating a new sub-theme	 114

Create a copy of the base theme	 114
Create the sub-theme in a new directory	 115
Delete the files you don't need	 115
Update the theme name throughout the
sub-theme	 115
Create a stylesheet for your sub-theme	 115
Update the sub-theme's .info file	 116

Customizing the sub-theme	 119
Configuring the theme	 120
Adapting the CSS	 121

Modifying a default template	 122
Overriding a themable function	 123

Summary	 124
Chapter 6: Creating a New Theme	 125

Planning the build	 125
Creating a new theme through sub-theming	 127

Selecting a base theme	 127
Creating the sub-theme	 129
Configuring the site	 133
Styling the new theme	 133

Fusion's theming resources	 134
Customizing the styling	 135

Building a new theme without sub-theming	 137
Planning the build	 138
Creating the necessary elements	 138

Populating the .info file	 139
Customizing the page.tpl.php file	 144
The style.css file	 145
Adding optional elements	 146

Packaging your theme	 147
Summary	 148

Chapter 7: Dynamic Theming	 149
Designating a separate Admin theme	 149
Using multiple page templates	 151

Creating a unique home page template	 153
Using a different template for a group of pages	 155
Assigning a specific template to a specific page	 156

Table of Contents

[iv]

Designating a specific template for a specific user	 157
Dynamically theming page elements	 157

Associating elements with the front page	 157
Styling by region	 158
Dynamically styling blocks	 158

Creating dynamic CSS styling	 161
Employing $classes for conditional styling	 161
Adding new variables to $classes	 163
Creating dynamic selectors for nodes	 163
Creating browser-specific stylesheets	 164

Summary	 164
Chapter 8: Dealing with Forms	 167

The Default Forms	 168
The User Forms	 168

Login Form	 168
User Registration Form	 170
Request Password Form	 170
User Profile Editing Form	 171

Contact Form	 173
Search Forms	 174

Block Search Form	 175
Page Search Form	 175
Advanced Search Form	 175
Search results page	 176

Poll module Forms	 177
Poll Block Form	 178
Poll Page Form	 178

Comment Form	 178
Administration Forms	 179

How Forms work in Drupal	 180
Modifying forms	 183

Working with the CSS styling	 184
Modifying the page or block holding the form	 184

Overriding the templates for pages and nodes containing forms	 185
Overriding the templates for blocks containing forms	 185

Overriding the default form templates	 187
Overriding theme functions to control form elements	 188
Creating dedicated templates for forms	 191
Modifying forms with custom modules	 193

Summary	 198

Table of Contents

[v]

Chapter 9: Overcoming Common Challenges in Drupal Theming	 199
Maintaining cross-browser compatibility	 200
Creating accessible themes	 201

Validation tools	 202
Drupal theme accessibility basics	 203

Avoiding tables	 203
Creating accessible forms	 203
Not relying on JavaScript	 204
Making sure your text resizes	 204
Ordering elements on the screen logically	 204
Providing hover states and visited states	 204
Providing alternatives to applets and plugins	 204
Supporting a semantic structure	 205
Using system fonts for your menus	 205
Using capitalization appropriately	 205
Using a suitable color scheme	 205
Using jump links	 205

Creating template suggestions for fields	 206
Creating template suggestions for specific nodes	 206
Suggestions for key modules	 207

Styling the Comment module	 207
Styling the Forum module	 208
Styling the Poll module	 208
Styling the Profile module	 209
Styling the Search module	 209

Theming Views	 209
Theming Panels	 212
Theming the maintenance page	 214
Troubleshooting your theme	 215

Basic principles	 215
Troubleshooting common problems	 216

Summary	 217
Chapter 10: Useful Extensions for Themers	 219

Drupal modules	 219
Administration Menu	 221
Chaos Tool Suite	 222
Colorbox	 222
Conditional Stylesheets	 222
Devel	 222
@font-your-face	 223
Frontpage	 223
HTML5 Tools	 223
.mobi Loader	 224

Table of Contents

[vi]

	 224
	 224
	 226
	 226
	 227
	 227
	 228
	 228
	 230
	 231
	 231
	 231
	 232

	 232
	 232
	 233
	 233
	 233

	 233
	
 235

	 235
	 236
	 237

	 237
	 239
	 239

	 239
	 239
	 241

	 241
	 241
	 243
	 243

	 243
	 243
	 244
	 244

	 244
	 244
	 246
	 246

	 246

Table of Contents

[vii]

Default templates	 246
Default stylesheets	 246
Themable functions	 247

Theming the DBLog module	 247
Default templates	 247
Default stylesheets	 247
Themable functions	 248

Theming the Field module	 248
Default templates	 248
Default stylesheets	 249
Themable functions	 249

Theming the Field UI module	 249
Default templates	 250
Default stylesheets	 250
Themable functions	 250

Theming the File module	 250
Default templates	 250
Default stylesheets	 250
Themable functions	 251

Theming the Filter module	 251
Default templates	 251
Default stylesheets	 251
Themable functions	 252

Theming the Form functionality	 252
Default templates	 252
Default stylesheets	 252
Themable functions	 252

Theming the Forum module	 254
Default templates	 254
Default stylesheets	 257
Themable functions	 257

Theming the Help module	 257
Default templates	 257
Default stylesheets	 257
Themable functions	 257

Theming the Image functionality	 258
Default templates	 258
Default stylesheets	 258
Themable functions	 258

Theming the Locale functionality	 259
Default templates	 259
Default stylesheets	 259
Themable functions	 259

Theming the Menu functionality	 259
Default templates	 260
Default stylesheets	 260
Themable functions	 260

Table of Contents

[viii]

Theming the Node functionality	 260
Default templates	 260
Default stylesheets	 262
Themable functions	 262

Theming the OpenID module	 262
Default templates	 262
Default stylesheets	 263
Themable functions	 263

Theming the Overlay module	 263
Default templates	 263
Default stylesheets	 263
Themable functions	 263

Theming the Poll module	 264
Default templates	 264
Default stylesheets	 265
Themable functions	 266

Theming the Profile module	 266
Default templates	 266
Default stylesheets	 267
Themable functions	 267

Theming the Search module	 267
Default templates	 267
Default stylesheets	 269
Themable functions	 269

Theming the Shortcut module	 269
Default templates	 269
Default stylesheets	 270
Themable functions	 270

Theming the System module	 270
Default templates	 270
Default stylesheets	 273
Themable functions	 273

Theming the Taxonomy module	 274
Default Template	 274
Default stylesheets	 275
Themable functions	 275

Theming the Toolbar module	 275
Default templates	 275
Default stylesheets	 276
Themable functions	 276

Theming the Tracker module	 276
Default templates	 276
Default stylesheets	 276
Themable functions	 276

Theming the Update module	 276
Default templates	 276
Default stylesheets	 277

Table of Contents

[ix]

Themable functions	 277
Theming the User module	 277

Default templates	 278
Default stylesheets	 279
Themable functions	 279

Index	 281

Preface
Drupal is an award winning open source Content Management System (CMS). Based
on PHP and MySQL, its power and flexibility combined with its exceptional design
mean it is one of the most popular choices for creating a CMS website.

Drupal employs a specialized templating system and supports themes, which allow
you to change the look and feel of your system's front and backend interfaces.

Drupal 7 Themes is an ideal introduction to theming with Drupal 7. If you want
to create a striking new look for your Drupal 7 website, this book is for you. This
book is a revised, updated, and expanded edition of Drupal 6 Themes, rewritten
specifically for Drupal 7.

This book will show you techniques and tools to help you improve the look and
feel of any Drupal 7-powered website. Starting from the basics of theme setup
and configuration, you will learn about the Drupal theming architecture and the
PHPTemplate engine, and then move on to modifying existing themes and building
new themes from scratch. You will find out about tools to make your theme
development easier.

What this book covers
Chapter 1, The Elements of a Drupal Theme: We begin by introducing how Drupal
themes work and by looking at the constituent parts of a typical theme. This chapter
builds familiarity with key Drupal theming concepts and lays the groundwork for
the chapters that follow.

Chapter 2, Working with the Default Configuration and Display Options: In this
chapter, we dig into the opportunities presented by the default theme and display
configuration settings included in the Drupal core. The focus is on getting the most
out of the default system without having to do any additional customization. This
chapter builds fluency with basic concepts by showing the system in action.

Preface

[2]

Chapter 3, Understanding PHPTemplate Themes: The PHPTemplate theme engine lies
at the core of Drupal themes. This chapter explains how it works and looks at how
themers can leverage the features of the theme engine to create compliant themes
and customize them effectively.

Chapter 4, Using Intercepts and Overrides: Intercepting and overriding theme output
is a key concept and one of the most important techniques in Drupal theming. This
chapter introduces the concept then teaches you how to apply it. The chapter covers
how to apply the technique to templates, functions, styles, and preprocessors.

Chapter 5, Customizing an Existing Theme: This chapter focuses is on sub-theming.
The chapter covers how to quickly and easily build a proper sub-theme and then
how to use that sub-theme to create a customized look and feel for a Drupal site.

Chapter 6, Creating a New Theme: This chapter shows how to create a new theme
for you Drupal 7 site. The contents cover both creation of a new theme through the
sub-theming technique and creating a new theme without the benefit of a sub-theme.

Chapter 7, Dynamic Theming: A review of the different techniques available for
creating templates and styles that are responsive to the conditions on the screen.
The chapter covers how to display templates and styles in response to the content
being displayed, or the user viewing the content.

Chapter 8, Theming Drupal Forms: This chapter reviews all of the forms included in the
Drupal core, then discusses the range of options available for modifying the output
of those forms. The techniques range from basic concepts like modifying styling all
the way through the use of custom modules to modify themes.

Chapter 9, Common Challenges in Drupal Theming: This chapter provides a discussion
on how to deal with common issues that arise during Drupal theming. Topics range
from theming specific types of output to managing accessibility to coping with the
small problems that tend to crop up during theme development.

Chapter 10, Useful Extensions for Themers: The final chapter looks at software tools that
can aid theme development. The chapter includes a list of Drupal modules that are
useful to themers as well as third-party tools that can make the job faster and easier.

Appendix, Indentifying Templates, Stylesheets, and Themable Functions: The book's
appendix provides a handy one-stop reference to themable elements of Drupal 7. We
list in one place, all the system's stylesheets, templates, and themable functions. The
appendix is organized topically and designed to make it easier for you to find the
style elements you need without having to dig through the online reference materials
to find all the relevant information.

Preface

[3]

What you need for this book
The most important requirement for getting the most out of this book is access to
Drupal 7 installation. It does not matter whether the Drupal site is hosted on an
external web host or on a local server. The important point is that you can get access
to not only the front and back end, but also to the database and the files.

Addition tools that will allow you to get the most out of this text:

•	 An FTP program for moving files to and from your Drupal 7 installation
•	 A code editing program

Who this book is for
The main requirements to make use of this book are knowledge of HTML, CSS, and
a touch of creativity. You don't need to know anything about theming in Drupal; all
you need is basic experience of working with Drupal.

Although this book aims to make Drupal theming accessible to designers, theming
in Drupal 7 involves writing some PHP code, and a basic knowledge of PHP will
be helpful.

Regardless of your technical skills, this book will teach you to design themes for
your Drupal websites quickly and easily.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The next step, therefore, is to open up our
new directory and delete everything except .info, /templates/page.tpl.php, and
template.php."

A block of code is set as follows:

functionjeanb_menu_tree($variables) {
return '<ul class="menu clearfix">' . $variables['tree'] . '</
ul>';
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?php if ($site_slogan);?>
 <div id="site-slogan">
 <?php print $site_slogan; ?>
 </div>
<?php endif; ?>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Either click
the SETTINGS tab on the top-right of Theme Manager, or click the Settings link
below the theme's description."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Learning the Basics of
Drupal Theming

This chapter introduces the key concepts that underpin the Drupal theming
system and explains the role that themes play in the presentation of a site's output.

The chapter covers the various types of themes, the elements of a theme, and the
functions those elements fulfill. At the end of the chapter, we will also look at the
themes contained in the Drupal distribution and examine exactly what it is that
makes each theme distinct.

The contents of this preliminary chapter provide the general comprehension
necessary to grasp the big picture of the role of themes in Drupal. Think of the
knowledge communicated in this chapter as a foundation upon which to build
the skills that follow in the subsequent chapters.

The topics covered in this chapter include:

•	 The role of themes in the Drupal system
•	 Basic principles to guide your work
•	 The relationship between theme files and the theme engine
•	 The output of the themes for both site visitors and site administrators
•	 An overview of the default themes

Let's start by looking at the key role themes play in the Drupal system.

Learning the Basics of Drupal Theming

[8]

The importance of themes in Drupal
The theme employed on your Drupal site defines the visual appearance of the site.
The theme files control the placement of the elements on the screen and impact both
the presentation of the contents and the usability of the functionality. How well a
theme is designed and implemented is, therefore, largely responsible for the first
impression made by your site. Themes are the most visible, and arguably the most
influential, element of your Drupal site.

While the default Drupal distribution includes a set of themes that will prove
sufficient for some users, it is assumed that you are reading this book out of a desire
to do more, whether it be only to install additional themes and customize them or to
build your own themes.

In order to grasp better some of the challenges (and opportunities) associated with
Drupal themes, it is useful to look at four concepts that run throughout this book.
These concepts impact the way you will use the system and the way in which you
will plan your theme deployment.

The four concepts are:

•	 One template or many? It's up to you
•	 Get creative with configuration
•	 Intercept and override
•	 Sub-themes are your friends

One template or many? It's up to you
Drupal allows you to implement customizations to your theme at a variety of levels,
and thereby provides you with extremely granular control over the appearance of
your site. While you do have the option to set a single unified look for the entire site,
you also have the option to create visually distinct pages or groups of pages. You can
even control the appearance of the individual elements on specific pages, if you so
desire.

The Drupal theme system permits you to assign different templates to different
purposes on your site. You can, for example, create a nice visual template for use
on your home page, then build another suitable for the display of text on your
content pages, and yet another for use on your forms pages. Indeed, not only can
you specify different templates for different pages, but you also have the ability to
provide styling for specific types of content or even for the output of a particular
functionality. As you will see later in this chapter, templates can be nested inside
each other, giving you the ability to affect the site's look and feel at multiple levels.

Chapter 1

[9]

The Drupal system is sometimes the subject of criticism due to its perceived
complexity. While the system does exhibit a certain degree of complexity, with
it comes a great deal of power. Once you develop familiarity with the system
and attain a bit of practice, you will discover that the system is very flexible and
rewarding. In the following chapters, we will look at how to implement multiple
templates and how to theme and configure all the various constituent parts of the
Drupal system.

Get creative with configuration
Use Drupal's blocks functionality to impact the presentation layer via thoughtful
use of the configuration and placement options.

A great deal of the output you see on the screen of a Drupal site is provided by
the system's blocks and modules. The process of activating modules and assigning
blocks to the pages is one of the most basic and important skills in Drupal site
building. A great deal of flexibility can be squeezed out of the system in this area
alone. Understanding the configuration options available for the blocks and modules
is one of the keys to building interesting and usable sites.

Modules are standalone bits of code—mini applications in some cases—that extend
the functionality of your site. It is through modules that Drupal provides functions
like the Forum, the Aggregator, and even additional administration functionality,
like the Overlay module.

Some modules produce output that appears on the screen, for example, the Forum
module, which produces a threaded discussions functionality with extensive output.
Other modules simply add functionality, for example the Database Logging module,
which simply logs and records system events to the database. The administrator is
able to toggle modules on or off and where those modules also provide blocks, the
administrator is able to assign the blocks to the various regions in the theme.

In addition to the blocks produced by modules, you can also create blocks specific
to your installation. Manually-created blocks provide an easy avenue for placement
of additional information (for example, text or images), or by inclusion of PHP code
in the block, additional functionality. Each of the blocks in the system, whether
created by modules or manually created by the system administrator, can be themed
individually.

Learning the Basics of Drupal Theming

[10]

This system, however, is not without complications. Module developers typically
build their modules to be self-contained units. This independence also extends to the
presentation layer of these discreet items of code. As a result, almost all the modules
have distinct formatting and specific files that control that formatting. This approach
to programming and modularization leads to a system in which a significant number
of discrete units must be dealt with, adding greatly to the potential for complexity in
changing the look and feel of a site to your specifications.

Each of the functional units—each module—is kept in a separate directory inside
the modules folder. Many contain their own CSS files, creating a large number of
stylesheets scattered throughout the system. Add to that already daunting collection
of modules any additional extensions you might have installed on your site and you
can see how CSS juggling might come to dominate your life. Nevertheless, fear not,
as styling all of this is manageable, using the technique discussed in the next section.

Intercept and override
Use Drupal's order of precedence to display only the files you want to display.

While Drupal may be more complex than some competing systems, the architecture
of Drupal is both logical and consistent. One of the key advantages of Drupal's
architecture is the ability to intercept and override the output of the default system
without having to make changes to the core files.

In simple terms, it works like this: During the process of getting data from its raw
form to its final displayed form, Drupal provides several opportunities for you
to affect the output. The Drupal system relies on a pre-determined hierarchy to
determine the order in which files are processed. You can use this to your advantage
by creating files of your own and injecting them into the process, thereby taking
precedence over the default files.

While it is possible (even tempting!) to modify the files in the core, it is strongly
discouraged. The best-practice approach to customizing your Drupal site involves
intercepting and overriding files and styles, that is, creating new code or styles that
the system will display in place of the default code or styles.

For example, if you wish to style a particular block, instead of hacking the module
that produces it, you can intercept the CSS styles or the template used by that block
with styles or a template of your own (indeed, you may even use a combination
of these techniques!). The new styles and templates you create will be a part of the
theme itself and will be stored in a directory distinct from the default core files.

Chapter 1

[11]

By choosing to affect the system's output by intercepting and overriding the default
files, we leave the core in its original state. This approach has several advantages, the
most significant being that system upgrades and patches can be applied to the core
without fear of losing modifications necessary to your presentation. Sites customized
in this manner are easier to maintain and your code remains portable and available
for re-use in other deployments.

"override"—as used in this context, refers to creating a file, function, or
style which is redundant with an existing file, function, or style. Courtesy
of Drupal's architecture, if you place the new file, function, or style in
the active theme's directory, the new files will be used by the system
in preference to the default files. The use of intercepts and overrides to
modify the look and feel of a Drupal theme is the subject of Chapter 4,
Using Intercepts and Overrides.

Sub-themes are your friends
Get a fast start on creating new themes by letting an existing theme do most of
the work.

Instead of coding a new theme from scratch, you can create a sub-theme, that is,
a new theme that uses part of the files, styles, and templates of an existing theme.
Sub-themes are the painless way to create new themes. Instead of re-inventing the
wheel, you find an existing theme that meets part of your needs, then you simply
create a sub-theme based on that theme. Once you have created the sub-theme you
can modify it to fit your needs.

To make this approach even more attractive, there are themes that are specifically
intended for use as the starting point for sub-themes. You will see later in Chapter 6,
Creating a New Theme, how you can use these themes to build new themes tailored to
your needs.

What is a theme?
In the context of Drupal, the term "theme" means a collection of inter-related
files that are responsible for the look and feel of a Drupal website. Other content
management systems (CMS) use different names for the files that perform the same
function in their particular systems—the most common term used being "template."

There are a couple of different ways you can look at the function Drupal themes:

•	 Expressed conceptually: A theme is a visual container that is used to format
and display data on the screen

Learning the Basics of Drupal Theming

[12]

•	 Expressed in terms of its component parts: A theme is a collection of files
that format data into the presentation layer viewed by site visitors and
system administrators

•	 Expressed in simple terms: A theme determines how your site looks!

A theme contains many types of files that are familiar to web designers, including
stylesheets, images, and JavaScript. A theme may also include some files whose
extensions may not be so familiar, for example *.tpl.php files – an extension that
is used to designate template files that use the PHPTemplate theme engine supplied
with Drupal. In later chapters, we will look at these files in detail.

Throughout this book, we will use "theme" to refer collectively to the files
responsible for displaying the information on the page. We will use "template"
to refer to a specific type of file found in themes, that is, the .tpl.php file.

Official Drupal online resources
Resource URL
Main Drupal Site http://drupal.org

Drupal Theme Development Forum http://drupal.org/forum/3

Drupal Theming on IRC IRC @ #drupal-themes

on the Freenode network

Download Extensions (including both
Modules and Themes)

http://drupal.org/project

Drupal 7 Theme Guide http://drupal.org/theme-guide

Theme Development Group on Drupal
Groups

http://groups.drupal.org/theme-
development

Chapter 1

[13]

What is a theme engine?
A theme engine is a collection of scripts and files that interact with the CMS core and
interpret the programming language used in the theme. There are several popular
theme engines, each of which is designed to interpret different templating languages.
Drupal is distributed with the PHPTemplate engine, which allows you to use
template files written in PHP.

Though PHPTemplate is currently distributed with the Drupal core,
historically there were a variety of other theme engines that could also
be installed and used with the Drupal system. Among the most popular
were XTemplate, Smarty, and PHPTal. With the arrival of Drupal 6, the
PHPTemplate engine was further integrated into the Drupal core. Today,
it is hard to find a good reason to look for something other than the
default PHPTemplate theme engine.

The range and flexibility of Drupal
themes
What can be done with a Drupal theme? How much presentation flexibility does
the system have? These are key questions that arise when evaluating Drupal for
your project.

The themes included in the default distribution, while useful, don't really offer much
in the way of variety. But don't let the default themes narrow your vision; the default
themes are basic and are best viewed as simple examples or starting points for your
theming efforts. The system is flexible enough to be used to create a wide variety of
layout styles, from traditional portal layouts to more cutting edge sites.

Learning the Basics of Drupal Theming

[14]

The following screenshots show only a small sampling of the different layouts and
design styles that can be created with Drupal. For a current list of some of the high
profile sites using Drupal, view the case studies page on Drupal.org: http://drupal.
org/cases.

When assessing a CMS, programmers and designers often have different agendas.

•	 Programmers tend to focus on the development potential the system offers,
that is, the underlying language and the ease of development. Programmers
typically want to know: What can I do with it?

•	 Designers, on the other hand, are typically more concerned with determining
what conditions or restrictions a system imposes on their ability to design
the interfaces desired by the client. Designers typically want to know: Does it
limit my ability to design a site?

Chapter 1

[15]

With Drupal, there is good news for both parties. For programmers, Drupal's
extensive API and the reliance on the PHPTemplate engine means it is possible to
tailor the output to match a wide variety of criteria. For designers, the flexibility of
the Drupal approach to site building allows for the creation of attractive and brand-
sensitive interfaces (not just a cookie-cutter portal or blog site).

The system offers the ability to create custom templates and to specify your modified
files over the default files—all without having to actually hack the Drupal core.
While it may take a while for a newcomer to become comfortable with the Drupal
approach to the presentation layer, it is worth the effort, as a little knowledge can go
a long way towards allowing you to tailor the system's output to your specific needs.

To get the most out of the Drupal theme system, it is necessary to have
some fluency with PHP. Though you can do a lot with just the CSS and
HTML elements, to access the more advanced functionality, you do need
to be able to at least copy and modify basic PHP.

The output of a Drupal theme
When you visit a website powered by Drupal, what you see on the screen is the
result of the site's active theme files. The theme's various files contain the functions
that produce the data and also set the styling, position, and placement of the data on
your screen. A lot of work for a small group of files.

When creating the theme, the designer designates areas inside the layout to fulfill
various functions. For example, in a typical three-column theme, the center column
is used to hold the primary content whereas the two smaller side columns contain
secondary information. Screen space within each of those areas is also allocated
according to the designer's priorities.

One of the key functions of the page template file in a Drupal theme is to provide
placeholders for the elements on the page. The placeholders are called regions. A
theme developer can insert the regions anywhere on the page by adding a short
statement to the code of the appropriate file.

Regions are created by placing simple, standardized PHP snippets inside
the page template file. The PHP statement will automatically include the
items assigned to the region. The region statement is typically wrapped
with a div to allow you to control the placement of the region on the
screen. Creating regions is discussed in detail in Chapter 5, Customizing an
Existing Theme.

Learning the Basics of Drupal Theming

[16]

Regions are, in other words, placeholders inside the page layout where a site
administrator can position functional output; this is most frequently done by
assigning blocks to the region desired.

The exhibit below shows the default Drupal theme, Bartik, with the active regions
highlighted. Sample content has been added to the site and several blocks have
been enabled in order to show how the active regions are placed in the layout. It's
important to note that while the region placement may be fixed in the layout, the
regions themselves are fluid entities, able to expand or contract to suit their contents.
Moreover, as Drupal does not limit the number of regions that you can use, the
layout of a site is a blank canvas that can be controlled with great specificity.

Chapter 1

[17]

Learning the Basics of Drupal Theming

[18]

Note that Bartik actually has more than the four regions shown in the
preceding screenshot, but since there is no output assigned to those
regions they do not occupy any space on the screen. Typically, regions
will collapse when empty, but this can be changed through the use of CSS
to specify the size and placement of the region.

Wherever regions have been specified, the site administrator can assign module
output. The following screenshot shows an edited view of the default Bartik theme,
trimmed to highlight the region named Sidebar first and the blocks that are assigned
to that region.

Chapter 1

[19]

As regions must be coded into your theme files (they cannot be created from within
the admin system), they are primarily the provenance of the theme developer.
Blocks, on the other hand, can be created and manipulated by the site administrator
from within the admin interface, without having to write any code.

Blocks can be created in two ways:
•	 First, whenever the site administrator activates a module that produces

visual output, one or more parallel blocks automatically become available.
The administrator can then assign those blocks to the region where they want
the output to appear.

•	 Alternatively, the administrator can manually create and display a new block
from within the Block Manager.

As each theme can have different region options, the Drupal system has a built-in
tool that allows you to view the regions in the active theme. To see what regions are
available in your theme, simply log in to the admin system and then select Structure
from the Management menu at the top of the page. Next, click the option Blocks.
Finally, click the link Demonstrate block regions and you will see something similar to
what is shown in the following screenshot. Each of the regions is highlighted in yellow.

Learning the Basics of Drupal Theming

[20]

You can view the regions in your theme at any time from within the admin system.
In this screenshot, you are looking at the regions in the Bartik theme.

The site administrator's view
Some of the big changes in Drupal 7 occurred in the administration system. In the
past, Drupal used one theme for both the frontend (the public view) and the backend
(the administrator view). Drupal 7 broke with the past, introducing not only a
dedicated theme for site administration, but also two modules intended to make site
administration easier.

The new admin theme is called Seven and is discussed below. The two new modules
are the Toolbar module and the Overlay module. Both modules and the theme are
enabled by default.

When the site administrator logs into the system, the frontend interface displays the
Toolbar, as shown in the following screenshot. The Toolbar provides quick access to
all the key administration functions, while remaining tucked away at the top of the
page, conveniently within reach, but mostly out of the way.

Chapter 1

[21]

• Clicking on the links at the top portion of the Toolbar opens the admin
overlay, shown in the following screenshot

• Clicking on the Home icon closes the admin overlay and displays the home
page showing the frontend theme

• At the top right is a link that allows the user to log out of the system
• The second row of buttons, shown in the light gray area of the Toolbar, is a

collection of shortcut links
• The administrator can add items to the shortcuts menu by clicking on the

Add Shortcut icon, shown in the preceding screenshot

You can also click the Edit shortcuts link (seen on the right side of the page) to open
an interface that allows you to manage all the shortcuts, or create new ones.

Learning the Basics of Drupal Theming

[22]

While no doubt many people will use the default configuration, you can also disable
the Overlay module, using only the Seven theme in the normal window. The
following image shows the Seven theme, without the Overlay.

Alternative administration themes are available and can be easily added
to the system. You can even create your own admin theme if you so
desire. Adding new themes to the system is discussed in Chapter 2,
Working with the Default Configuration and Display Options.

Chapter 1

[23]

The default Drupal themes
There are several themes included in the default distribution of Drupal 7. The themes
not only provide some basic variety in look and style but also can be used to help
you understand how themes work in Drupal. By studying the default themes, you
can learn from the functional examples they provide and you can see how various
theming techniques have been implemented successfully.

To view the various themes, log in to your site as an administrator, and then click on
the Appearance link on the Toolbar. The Theme Manager will appear in the Overlay,
as shown in the following screenshot. The Theme Manager displays a list of all the
themes installed on the system and provides access to the controls that allow you to
enable, activate, and configure each of the themes.

There are four default themes included with Drupal 7:

•	 Bartik
•	 Garland

Learning the Basics of Drupal Theming

[24]

•	 Seven
•	 Stark

Of the four, Bartik and Garland are ready to use for the frontend of your Drupal site.
Seven is intended for use an as administration theme. Stark is provided primarily as
a tool to aid in the creation of new themes and, in its raw form, is not suitable for use
on a site.

During the Drupal installation process, the system automatically assigns Bartik as
the theme for all frontend pages and also sets Seven as the administration theme.
You can change the settings and switch to any of the other themes easily by using
the controls on the Theme Manager.

In the screenshots that follow, I show how each of the frontend themes appears
with exactly the same content, blocks, and configuration.

Bartik
Bartik is the first theme you see when you install Drupal 7. The theme serves as the
default frontend theme. The Bartik theme has several advantages that make it an
attractive choice:

•	 Flexible width that adjusts to the user's display
•	 A very wide selection of regions—15 in total!
•	 Supports one, two, or three-column layouts
•	 Supports four-column area at the bottom of page
•	 Easily configurable color scheme, via the Theme Manager

The Bartik theme is shown in the following screenshot:

Chapter 1

[25]

Learning the Basics of Drupal Theming

[26]

Garland
Garland served as the default theme for Drupal until replaced by Bartik in Drupal
7. The Garland theme, however, continues to be distributed with Drupal. The theme
has been tweaked a bit for Drupal 7, but remains visually the same as in previous
Drupal releases. Garland supports a number of useful features:

•	 The option to select either Flexible width that adjusts to the user's display, or
Fixed width display

•	 Six regions to choose from
•	 Supports one, two, or three-column layout
•	 Easily configurable color scheme, via the Theme Manager

The Garland theme is shown in the following screenshot:

Chapter 1

[27]

Learning the Basics of Drupal Theming

[28]

Stark
Though Stark is not intended for use on a site in its raw form, a screenshot is given
below, so you can see what it does. The theme is a tool. It is included to demonstrate
the default HTML markup and CSS styles, and provides a reference point for your
use when creating your own themes or working with the system styling.

Features of the Stark theme:

•	 Flexible width that adjusts to the user's display
•	 Seven regions to choose from
•	 Supports one, two, or three-column layout

Strictly speaking, Stark is not a true theme, as it lacks a page.tpl.php file. The
output you see on the screen is raw—straight from PHPTemplate—with only the
system's default CSS styling applied.

Chapter 1

[29]

Learning the Basics of Drupal Theming

[30]

To change themes, simply access the Theme Manager in the admin interface and
click the link labeled Set default, which appears next to the theme you wish to
activate. The default theme will be immediately visible once your choice has been
saved.

The default theme appears on all pages that are not specifically assigned
to another theme.

As noted previously, Bartik, Garland, and Stark all support one, two, or three-
column layouts. The way in which these themes are designed creates the flexibility
in the layout. The site administrator can assign items to regions in the side columns,
if so desired; the side columns only appear when items are assigned to that position.
When items are not assigned to a side column, the theme automatically collapses the
unused region. Assigning blocks to columns is discussed in the next chapter.

Unlike Drupal 6, none of the themes included in Drupal 7 have sub-
themes. Creating sub-themes does however, remain an option you can
use. Sub-themes are discussed in Chapter 5, Customizing an Existing Theme.

Theme files
A diverse group of files work together to enable themes in Drupal. While the ones
you need are kept in the themes directory, the theme engine and other helper files
are located in a different place.

•	 The core themes and their respective files are kept in the directory named
/themes on your server.

•	 The PHPTemplate engine files are located in the /engines sub-directory
inside the /themes directory.

•	 The html.tpl.php file is located in the /modules/system directory. This file
is new in Drupal 7 and is used to provide header and doctype data used by
all the themes.

Note that although the directories containing the default themes are
located inside /themes, if you create or install new themes, they should
be placed in the /sites/all/ themes directory.

To view the theme and theme engine files in your Drupal installation, access your
server and navigate to the directory located at /themes. As shown in the following
screenshot, the structure is somewhat involved.

Chapter 1

[31]

Learning the Basics of Drupal Theming

[32]

The themes included with Drupal 7 all use the PHPTemplate engine. Though it is
possible to build themes without using PHPTemplate, given the degree in which the
theme engine is integrated with the core, it is very hard to justify working without it.

The PHPTemplate-specific files all follow the same naming convention — *.tpl.
php. The prefix of each of those files is specific in that they are intended to override
functions defined elsewhere. For the system to recognize that these files in the theme
directory are intended to override the originals, the names must be consistent with
the originals. The naming of some of the other theme files is flexible and within the
discretion of the author.

To create a theme that uses the PHPTemplate theme engine, you need three files:

•	 page.tpl.php: The file containing the regions and the key elements of the
layout

•	 style.css: The Cascading Style Sheet for the theme; this is needed only for
styling unique to the theme

•	 .info: This file sets a number of parameters for your theme, including the
theme's name, description, and version information

While it is not required for the theme to function, it is best practice to
always include a thumbnail image of the theme. The thumbnail is used in
the admin interface to provide site administrators with a preview of the
installed themes. The guidelines for screenshots can be found at http://
drupal.org/node/11637.

In addition to the basic required files, the theme author has the option to include
additional files used to override the default styling, or to provide customizations
relevant to specific pages or page elements. Overrides are not required and as the use
of them is within the discretion of the theme developer, the presence and extent of
the overrides inside any one theme will vary.

We will take an in-depth look at the various theme files and the concepts and rules
relating to overrides in later chapters.

Chapter 1

[33]

Summary
At the conclusion of this chapter, you should now have some familiarity with the big
picture—with the basic terminology used in Drupal, with the way Drupal presents
data at runtime, with the general functions of themes, and with the location and
nature of the key files and directories.

Despite the apparent complexity one sees at first glance, Drupal themes can be
managed in a logical and relatively easy fashion by working with theme files (not
hacking the core!) and through applying your own styling to intercept and override
the default formatting of the Drupal system.

In the next chapter, we look at how you can install and configure themes and how
the choices that you make can have a significant impact on the presentation layer of
your site.

Working with the Default
Configuration and Display

Options
You can find both design ideas and complete themes for Drupal on the Web. The issue
becomes identifying the sources of themes and designs, and determining how much
of the work you want to do yourself. Some themes are very flexible, with numerous
options that can affect the appearance and the layout; others are more limited.

The default Drupal system also includes a number of controls that allow you to
impact the look and feel of your site, from theme configuration to the placement
of output on the screen. You can do a great deal with the standard options at your
disposal. The key is to understand the choices that are available to you and learn
how to squeeze the most out of the system.

In this chapter, we discuss adding new themes to the system and focus on
configuration and controlling the display of the output. The chapter assumes you
have a working Drupal installation, and that you have access to the files on your
server. We will cover:

•	 Configuring a theme
•	 An introduction to the Blocks Manager
•	 An introduction to the Modules Manager
•	 Managing block and module visibility
•	 Finding pre-built themes for your site
•	 Installing new themes on your site
•	 Uninstalling themes
•	 Looking at how to configure a theme

Working with the Default Configuration and Display Options

[36]

Configuring a theme
Drupal provides an interface from which you can access the configuration settings
applicable to the site themes. There are both global configuration options and
theme-specific settings. In this section, we take a look at both and show how they
can be used to customize the display of your theme—all without the need for
additional coding.

Theme configuration settings are accessed from the Theme Manager. To access the
Theme Manager, log in to the admin system and then select the Appearance option
on the Management menu; the Theme Manager will load in the overlay, as shown
next. Note the Settings links, one below the theme description, the other at the top-
right of the overlay. Clicking either one will take you to the configuration dialog.

You can access the configuration settings in one of two ways: Either click the
SETTINGS tab on the top-right of Theme Manager, or click the Settings link below
the theme's description. In the first case, the Global Theme Configuration Manager
will load; in the second, the Theme-Specific Configuration Manager will load. Both
versions of the Theme Configuration Manager are discussed in turn, next.

Chapter 2

[37]

If there is a conflict between the theme-specific configuration settings
and the global configuration settings, the theme-specific settings will take
precedence.

Global Theme Configuration
Clicking the SETTINGS tab on the Theme Manager will load the Global Theme
Configuration Manager in your overlay, as shown in the following screenshot. Note the
buttons at the top-right that allow you jump to the theme-specific configuration pages:

Working with the Default Configuration and Display Options

[38]

The controls on this page are grouped into three areas:

•	 Toggle Display
•	 Logo Image Settings
•	 Shortcut Icon Settings

Each of the control groups is discussed next.

To change your Global Theme Configuration options, simply make your selections
on the preceding page shown, then click the Save configuration button at the bottom
of the overlay. The changes will become available immediately to all of the frontend
themes active on the site, excepting only those themes where you have overridden
the global settings by selecting different options in the Theme-Specific Configuration
Manager, discussed later in this chapter.

Toggle Display
The Toggle Display section contains a set of options that can be turned on or off.
By default, all are set to the "on" position; de-select an option to turn it off. Many
of the options relate to the fundamental elements of the site, like the Logo, the Site
name, the Site slogan, or the Main and Secondary menu. Other options are specific
to certain types of functionality, for example, whether to show or hide the users'
pictures in posts or comments. Note that two of the checkboxes in this section, Logo
and Shortcut icon, affect the two sections that follow the Toggle Display section.

One of the changes in Drupal 7 is the omission of the search functionality
from the theme configuration options.

Logo Image Settings
The Logo Image Settings section allows you to select which logo the site theme will
use. This section is dependent on the Logo checkbox being selected in the Toggle
Display section, above. If the Logo checkbox is selected, then the administrator
has the choice between using the default logo included with the theme or using an
alternative logo. If you de-select the checkbox, fields appear that allow you to upload
your own logo, as shown in the following screenshot:

Chapter 2

[39]

Once the logo is uploaded, note that the location and name that the system has given
to the logo file appears in the box labeled Path to custom logo.

Working with the Default Configuration and Display Options

[40]

Shortcut Icon Settings
The Shortcut Icon section allows you to select an icon that will appear in the
address bar and bookmarks of certain browsers. Like the Logo section, this section is
dependent on the Shortcut icon checkbox being selected in the Toggle Display section
at the top of the page. If the Shortcut icon checkbox is selected, then the administrator
has the choice between using the default icon included with the template and using an
alternative shortcut icon. If you de-select the checkbox, fields appear that allow you to
upload your own shortcut icon, as shown in the following screenshot:

Once the image is uploaded, the location of the file will appear in the box labeled
Path to custom icon.

Theme-Specific Configuration
As noted previously, the Global Theme Configuration Manager impacts all themes
on the site. You can, however, override those global setting for individual themes by
working with the Theme-Specific Configuration Manager.

Chapter 2

[41]

Each active theme has its own configuration settings page. You can access this page
by clicking the Settings link next to the theme's name in the Theme Manager, or by
selecting the SETTINGS tab on the overlay, then clicking on the name of the theme.
Clicking on either option will display the Theme-Specific Configuration Manager
for that theme. The options available will vary from theme to theme, depending
on the features that the theme provides. For this chapter, we will be working with
the default Bartik theme. Bartik's theme configuration settings page is shown in the
following illustration. It is typical of most themes:

Working with the Default Configuration and Display Options

[42]

Typically, the Global Theme Configuration Manager and the Theme-Specific
Configuration Manager will be largely identical, with the only difference being
functionality, that is unique to that particular theme. In the case of the Bartik theme,
the only difference is the presence of the Color Scheme controls.

The Color Scheme controls are made possible by the Color module (modules/
color/color.module), that is included by default as part of the Drupal core. The
utility is designed to make it easy for you to change the colors of a theme without
having to resort to working with the code. If the theme supports the Color Picker, all
you need to do is visit the configuration page for that theme and you can change the
colors to suit your needs. Not all themes support this configuration option, but when
they do, this is a dead easy way to modify the colors used throughout the theme.

The best way to learn this tool is to just get in and play with it. It is a simple tool
and the range of choices and the limitations become apparent pretty quickly.

The padlock icons on the Color Scheme color fields are used to lock in
the relationship between two or more color choices. This allows you to
experiment with different color combinations, all the while keeping the
relationship between the various colors intact.

Controlling module and block visibility
Modules provide the functionality in your Drupal site. Some modules produce
HTML output, others do not. Many of the modules that produce output also include
blocks, which allow you to place variations of the output in the many block positions
(regions) in a theme.

The Forum module provides a typical example: when you enable the Forum module,
you gain access to both new functionality and new output. The primary forum
output, the threaded discussions, will appear in the content area of the theme.
Additionally, enabling the Forum module provides you with access to two new
blocks. The two new blocks are named Active forum topics and New forum topics.
As the names imply, the blocks provide a way to display a limited portion of the
forum output as blocks. You can assign the blocks to pages and positions as you
wish, as explained next.

The modules you select and the positioning of their output greatly affects both the
look and the functionality of your site. Effective management of the various modules
and blocks is one of the keys to controlling the user experience on your site.

Chapter 2

[43]

The standard Drupal distribution includes a number of modules, only some of which
are active in the default configuration. You can enable additional modules or disable
some of the optional ones to achieve the functionality you desire.

A variety of additional modules, often called contributed modules,
can be found on the official Drupal site at: http://drupal.org/
project/modules.

Introducing the Module Manager
The Module Manager includes a list of all available installed modules. To access
the Module Manager, log in to the admin system of your site and select the option
Modules from the Management Menu; the Module Manager will load in the overlay,
as shown in the following screenshot:

Working with the Default Configuration and Display Options

[44]

To enable a module, simply access the Module Manager and then click the checkbox to
the left of the module's name. De-select the box to disable the module. Once you have
made your choices, click the Save configuration button at the bottom of the page.

The following table lists all the modules bundled with Drupal 7 and explains their
basic output:

Name Primary output Block output Enabled
by
default?

Aggregator Provides page(s) of RSS
feed from third-party
sources

Recent items lists for
both individual feeds and
categories.

No

Block Used by system n/a Yes
Blog Provides the Blog content

type that enables the
creation of one or more
blogs to display in the
pages

Recent Blog Posts block No

Book Provides the Book content
type, that enables the
creation of hierarchical
pages

Book Navigation block No

Color No HTML output for site
visitors

None Yes

Comment Powers the user comments
functionality

Recent Comments block Yes

Contact Powers the site-wide
contact and user contact
forms

None No

Content
translation

No HTML output for site
visitors

None No

Contextual links No HTML output for site
visitors

None Yes

Dashboard Provides admin system
dashboard

None Yes

Database
logging

No HTML output for site
visitors

None Yes

Field Used by system None Yes
Field SQL
storage

Used by system None Yes

Chapter 2

[45]

Name Primary output Block output Enabled
by
default?

Field UI Used by system None Yes
File Used by system None Yes
Filter Used by system None Yes
Forum Provides threaded

discussion forum(s)
Blocks showing New
forum topics and Active
forum topics

No

Help Used by system System Help block Yes
Image Used by system None Yes
List Used by system None Yes
Locale Used by system Language Switcher block No
Menu Used by system Powers all menu blocks Yes
Node Used by system None Yes
Number Used by system None Yes
OpenID Enables use of OpenID by

the user authentication
system

None No

Options Used by system None Yes
Overlay Provides the overlay used

by the admin system
None Yes

Path Used by system None Yes
PHP filter Used by system None No
Poll Provides pages containing

polls and poll results
Recent Poll block No

RDF Used by system None Yes
Search Powers the search form,

which can be linked as a
page (though it is not by
default!)

Search Form block. Yes

Shortcut Powers the shortcut bar
used in the admin menu

Shortcuts block Yes

Statistics Powers the Reports pages
seen in the admin system

None No

Syslog Used by system None No
System Used by system for various

purposes
None Yes

Working with the Default Configuration and Display Options

[46]

Name Primary output Block output Enabled
by
default?

Taxonomy Provides one or more
taxonomy pages

None Yes

Testing Used by system None No
Text Used by system None Yes
Toolbar Used by system None Yes
Tracker Used by system None No
Trigger Used by system None No
Update
manager

Used by system None Yes

User Powers the user pages
and the various login and
password reminder pages

User Login, Who's New,
and Who's Online blocks

Yes

Additional modules can be downloaded and installed easily.

Note that some modules may require you to set permissions if you
wish users other than User #1 to see all the options available. If you
wish to expand permissions beyond User #1, you will need to visit
the Permissions page and adjust the settings for your new module
accordingly.

Introducing the Blocks Manager
The tasks relating to block management are accessed through the Blocks Manager,
which can be found by logging into the admin system and clicking on the Structure
option on the Management Menu, then selecting Blocks from the list of choices that
appear on the overlay.

The Blocks Manager interface is shown next. Note the links to Demonstrate block
regions and to Add block:

Chapter 2

[47]

The Blocks Manager gives you control over a number of useful aspects relevant to
your theme. First and of primary importance is the ability to publish blocks to the
regions of your theme, thereby allowing you to position the output on the screen.

For a block to be visible, the block must be both enabled and assigned to an active
region on the page.

Working with the Default Configuration and Display Options

[48]

As regions vary from theme to theme, the system provides a handy utility for
identifying the regions in the active theme. To use the tool, simply click the
Demonstrate block regions link on the Blocks Manager interface. Clicking the link
when the Bartik theme is active produces the output immediately as seen in the
following screenshot. The portions of the page highlighted in yellow show you the
available regions. Click the Exit block region demonstration link to close this and
return to the Blocks Manager:

Chapter 2

[49]

To assign a block to a region, select the desired region from the combo box
immediately to the right of the block's name. Click the Save blocks button; if all
things necessary for the output to appear have been satisfied, the output will now
also appear on the page.

Hiding a block is just as easy: Simply select <none> from the combo box and then
click Save blocks; the block will be immediately hidden from the view.

Remember that the name, number, and placement of regions may vary
from theme to theme. If you are using multiple themes on your site, be
sensitive to block placement across themes, or else unexpected results
may occur.

You can also use the Blocks Manager to manage the ordering of blocks inside each
region. Immediately to the left of each block's name is a "cross" of four arrows; click
and drag this cross to change the ordering of the blocks within the region.

Configuring individual blocks
Some individual blocks also include their own configuration options. The Blocks
Manager gives you access to the configuration dialog for each block. Blocks can be
configured at any time. Simply find the block you wish to modify, then click the
configure link in the far right Operations column.

For example, look at the User Login block, as the configuration options presented
there are typical.

The User Login block provides the login form and related
functionality. In the default configuration, it is visible in the left
column of the Bartik theme.

Working with the Default Configuration and Display Options

[50]

Visit the Blocks Manager, find the User Login block, then click the Configure link;
the screen that you see next will load in the overlay. Note the Visibility settings
section is divided into multiple tabs:

The Block Configuration interface provides options for naming and displaying the
block. All parameters on this page are optional.

Chapter 2

[51]

The first option, Block title, gives you a free text field into which you can enter a
specific name that will override the default block name. If nothing is entered, the
default name (supplied by the system for the default blocks) will appear. If you wish
no title to appear with the block, then enter <none> in the text field provided.

The remaining options all relate to the visibility of the block. You are able to control
when the block will appear to a user by setting and applying the conditions on this
screen.

Region Settings
The first option, Region Settings, gives you control over the placement of the block
on the page. You will see here a list of all the active themes, each with a combo
box containing a list of the regions available in each active theme. Select the region
placements you wish from the combo boxes.

Visibility Settings
The set of tabs in this section allow you to create conditions that control the visibility
of the block. The options include the ability to restrict visibility by page, by content
type, by role, or by individual user; each is discussed next.

As you modify the settings, you will note that the information on the tab
is also updated to display the current setting.

Pages
The system presents you with two choices: the options allow you to either list the
pages where you wish to include or exclude the display of the block. To enable this
function, select the appropriate radio button and then enter the URLs of the pages
you wish to specify in the box below. Select the first option, then leave the box empty
to display the block on all pages—this is the default setting.

While you can enter in the text field exact URLs, there are also some good shortcuts
available which will save you from having to enter a number of URLs to capture
every single page of a particular content area or functionality:

Term Designates
<front> The home page
admin The Admin main page

Working with the Default Configuration and Display Options

[52]

Term Designates
aggregator The RSS Aggregator main page
aggregator/x The RSS Aggregator with the ID of x

(where x is an integer, or the alias if you are using URL aliases)
aggregator/* All URLs that include aggregator/
blog The blog main page
blog/x The blog with the ID of x (where x is an integer, or the alias if you

are using URL aliases)
blog/* All URLs that include blog/ (every personal blog main page)
contact The default system Contact form
forum The Forum main page
forum/x The Forum with the ID of x (where x is an integer, or the alias if

you are using URL aliases)
forum/* All URLs that include forum/ (every forum main page)
node/x An item with the node ID of x (where x is an integer, or the alias if

you are using URL aliases)
user/* The User pages
user/x The main page of the user with the ID of x (where x is an integer,

or the alias if you are using URL aliases)

Note that you can use more than one statement at a time. To use multiple statements,
simply input them on separate lines in the textbox. One consideration to keep in
mind is that you cannot specify at the same time, pages on which a block will appear
as well as pages on which the block does not appear—those options are mutually
exclusive.

Content Types
The options seen on this tab reflect the content types that are enabled for the site. In
the following example you can see two content types: The default Article and Basic
page content types. The following screenshot shows the Content types tab active and
the choices it contains:

Chapter 2

[53]

Click to select the types with which you wish to display the block. If you select none,
the block is shown with all content types (no restrictions).

Working with the Default Configuration and Display Options

[54]

Roles
The options seen on this tab reflect the user roles that exist in the system, as shown
next. Select one or more options to restrict visibility of the block. Select none of the
options to show the block to all user roles (no restrictions). The following screenshot
shows the Roles tab active and the choices it contains.

Users
The second and third options, labeled Customizable, visible by default and
Customizable, hidden by default, allow you to give users the freedom to show or
hide the block. If you do not wish to grant users this discretion, leave the default
setting (Not customizable). The following screenshot shows the Users tab active
and the choices it contains.

Chapter 2

[55]

Finding additional themes
A good place to start looking for a Drupal theme is, perhaps not surprisingly, the
official Drupal site. At Drupal.org, you can find a variety of ready-to-use themes. Go
to http://drupal.org/project/themes to find a listing of the current collection.

The Drupal site permits you to filter the themes (and other extensions) by
Drupal version—this makes finding compatible extensions a breeze.

Working with the Default Configuration and Display Options

[56]

In addition to the resources on the official Drupal site, there are a number of fan
sites that provide themes. Some themes are open source, others commercial, and a
fair number are running other licenses (most frequently asking that footers be left
intact with links back to the developer's site). If you wish to use an existing theme,
pay attention to the terms of usage. You can save yourself (or your clients) major
headaches by catching any unusual licensing provisions early in the process. There's
nothing worse than spending hours on a theme only to discover that its use is
somehow restricted.

Some of the themes available from the community are great; most are average. If
your firm is brand-sensitive or your personal style idiosyncratic, you will probably
find yourself developing your own theme. Most community-produced themes are
fairly generic in nature and are meant to fit a wide variety of usages. Some are more
flexible and can be tailored to your needs. Still others, like the Zen theme we use
later in this chapter, are intended as a starting point for your use in the creation of
sub-themes.

Regardless of your particular needs, the various theme repositories are a good place
to start gathering ideas. Even if you cannot find exactly what you need, you can
sometimes find something with which you can work. An existing set of properly
formed theme files can jump start your efforts and save you a ton of time.

There are two basic issues you must consider when determining whether an
existing theme is suitable for your needs: compatibility and prerequisites.

The first issue is compatibility. Drupal themes are not compatible across versions of
Drupal. Themes made for Drupal 5 or Drupal 6 will not work properly on Drupal 7.

To find the version information for your Drupal installation, go to Reports | Status
report. The first line of the Status Report shows your Drupal version number, as
seen in the following exhibit:

Chapter 2

[57]

Once you know what version of Drupal you are running, you can confirm whether
the theme you are considering is usable on your system. Themes normally state
clearly their version compatibility. All on the themes on Drupal.org, for example,
state expressly what versions of Drupal they were intended for.

Some theme projects have multiple versions, each targeting a different
Drupal release; be certain you grab the right one.

If the theme you are looking at doesn't provide versioning information, assume
the worst. While it is extremely rare for a theme installation to cause problems, it's
always better practice to back up your site before installing anything that might be
questionable.

Working with the Default Configuration and Display Options

[58]

To back up your Drupal site properly, you need to capture three
things: the core files, the /sites directory, and the database. Simply
copying the files via FTP is not enough; to properly back up your site
you will need to backup the database, too. To back up your database,
use phpMyAdmin, or whatever tools are provided by your webhost.
Alternatively there are extensions (Drupal modules) you can install
on your Drupal site which allow you to perform backups from within
Drupal. To learn more about the various backup techniques, visit
http://drupal.org/node/22281.

Once you're past the compatibility hurdle, your next concern is whether the theme
requires other components to work properly. Most themes are ready to use with
your default Drupal installation, there are some themes, however, that require the
installation of specific additional modules.

If the theme you've chosen requires you to download and install other extensions,
the information will typically be stated on the theme's homepage or in the README
file included with the theme. If additional extensions are needed, install and enable
them first, before you install your theme.

By way of example, we are going to download and install one of the most popular
third-party themes from Drupal.org: Zen. The authors of Zen describe the theme as
"the ultimate starting theme for Drupal." Zen is very basic in design, but includes a
number of useful features that make it particularly suitable for customization and
extension. With Zen, you are given a selection of common templates and supporting
files upon which you can build your own theme; this is typically done through the
creation of a sub-theme that uses the Zen resources.

The Zen theme has been around for quite some time and is under active
development. There are a lot of good resources associated with this theme and the
theme is the subject of frequent discussions on the Drupal forums. The following
screenshot shows the Zen project page on Drupal.org at http://drupal.org/
project/zen:

Chapter 2

[59]

Zen is not, however, the only "starter theme" out there. Drupal 7 now includes Stark,
which can also be used as a starter theme (though this is not your best choice!). Other
popular options include:

•	 Adaptivetheme: This package includes a wide array of options, including a
ready-to-go sub-theme and its own admin theme. This is a pure CSS theme
with good semantic markup and a number of configuration options for the
layout and output. The Skinr module is also supported. You can find out
more by visiting http://drupal.org/project/adaptivetheme.

•	 Basic: Originally based on Zen, the Basic theme has evolved into an
independent project with its own take on the starter theme concept. It is SEO
friendly and easy to modify. It also includes support for the Skinr module
and for a CSS preprocessing language called SASS. To use Skinr or SASS you
will need to install additional modules. You can find out more by visiting
http://drupal.org/project/basic.

Working with the Default Configuration and Display Options

[60]

•	 Framework: A very clean and simple design intended as a "blank slate" for
themers. The Framework theme is grid-based and provides good flexibility
for multiple layout styles. The theme also includes a well-organized CSS and
works well with mobile devices. At the time of writing, however, a Drupal
7 version was not available. You can find out more by visiting http://
drupal.org/project/framework.

•	 Fusion: Fusion is a very powerful starter theme, but does require the use of
the Skinr module for block styling; if you wish to use this feature, you will
have to install Skinr on your site. The theme includes a wide range of options
and can be used as either a flexible width or a fixed width theme. Fusion also
supports the popular Superfish drop-down menus. Good documentation
exists for this theme. You can find out more by visiting http://drupal.org/
project/fusion.

•	 Sky: A simple CSS-based theme with support for multiple layouts. At the time
of writing, a Drupal 7 version was not yet available, however one has been
announced and it will supposedly include support for the Skinr module. You
can find out more by visiting http://drupal.org/project/sky.

Installing an additional theme
With the arrival of Drupal 7, themes and other extensions can now be installed
automatically from within the admin interface. The option to use manual installation
still exists, however. We cover both options now.

Automatic installation
If your Drupal installation has access to the Internet, you can install theme files
directly from Drupal.org. Alternatively, if you have downloaded the theme archive
to your local machine, you can also install the theme from within the Drupal admin
system, without having to manually move the files via FTP. Both options tend to be
faster and simpler than traditional, manual installation.

To use the automatic installer, follow these steps:
1.	 First log in to the admin system and access the Theme Manager by selecting

Appearance from the Management menu.
2.	 Next, when the Theme Manager loads in the overlay, select the option Install

new theme. The automatic installer will load in the overlay, as shown in the
screenshot below.

3.	 If you wish to install the theme directly from Drupal.org, or another location
on the web, enter the URL in the field labeled Install from a URL. If you
have already downloaded the theme archive, then click the Browse button,
find the archive on your local computer, and then click Open.

Chapter 2

[61]

4.	 Finally, click the Install button and the system will attempt to install the
theme package. If you are successful you will see a confirmation message.

The theme should now be available in the Theme Manager, though at this point it
will still need to be enabled before you can use it.

Manual installation
Manual theme installation requires that you have the ability to move files from your
local machine onto your server. Typically, this is done with an FTP client or through
your web hosting control panel. The method you use is up to you. It makes no
difference to Drupal which method you employ.

When you obtained your theme, the odds are that it was delivered to you as a single
file containing a compressed archive of files. When you download Zen you will wind
up with an archive file.

Working with the Default Configuration and Display Options

[62]

The .tar.gz format (a.k.a. "tarball") is one of the several commonly used
archive formats.

The first step towards getting the theme installed is to uncompress the archive.
Double-click the archive and one of two things will happen: Either the file will
uncompress and leave you with a new folder named zen or your system will prompt
you to look for an application to open the archive file. In the latter case, you will need
to track down and install a file compression program. There are lots of good ones
out there. Most users, however, should have no problems as compression software is
installed on many systems these days.

Once you have successfully extracted the files, take a look at what you have. If the
theme directory includes a README file, read it now, making sure you haven't missed
any system requirements or terms of use for the theme.

The next step is to get the extracted theme files on to your server. Use whatever
means you prefer (FTP, control panel, and so on) to gain access to the directories of
your Drupal site on the server.

Once you have access to your server, navigate to the directory sites/all; this is
where you should place all third-party themes and modules. Place all additional
theme files inside the sites/all/themes directory. Each theme should be kept in
a separate directory. Copy the zen directory and its contents inside sites/all/
themes. In this case you should have wound up with a directory structure like this:
sites/all/themes/zen, as seen in the following exhibit:

Placing all your extensions inside the sites/all directory means less
complication with future upgrades. Additionally, using the sites/all/
themes directory, instead of the themes directory, allows you to run
multiple sites off a single Drupal installation.

Chapter 2

[63]

For the next steps, access the admin interface to your site via your browser and go to
the theme. You should see your new theme listed on the page, as per the following
illustration:

Working with the Default Configuration and Display Options

[64]

The Theme Manager provides a list of all the themes available on your site. Note the
Enable link and the Enable and set default link; these controls are key to activating a
theme for display on the site. To use the new theme we must first enable it. Once the
theme is enabled, we can assign it to appear where we wish and configure it.

To enable Zen, click the Enable link below the theme description. Note that the
appearance of the site does not change—that is because the new theme is neither
assigned to any pages (nodes) nor is it set as the default.

Next, let's assign the theme to appear where we want. In this case, we want Zen to
appear throughout the site, so we are going to select the Set default link. The Set
default control is important; it sets the primary theme—the default theme—for the
site. The default theme will be used by the system in all situations in which another
theme is not specified.

Note that if we had clicked the option Enable and set default, the theme
would have been immediately set as the default theme.

Uninstalling themes
Uninstalling themes is a simple process, essentially the reverse of installing. First go
to the Themes Manager and make sure that the theme you wish to uninstall is not
currently enabled. Once you have verified that it is disabled, then access your server.
On the server, find the directory containing the theme files and delete the files and
the directory. That's all there is to it!

Note that Drupal is very forgiving, and erroneous deletion of an active
theme will not crash your site, it will simply result in the content being
shown without any styling.

Chapter 2

[65]

Summary
We started this chapter by looking at how to find and install themes and we ended
by trying to extract as much as we could from a basic theme through use of the
default Drupal configuration options.

As you will see in the chapters ahead, the techniques we covered in this chapter
are just the beginning of what you can do with Drupal themes. Nonetheless, the
configuration principles in this chapter, particularly as they relate to the use of
modules and blocks and the control of visibility settings, are important for all theme
work. We will come back to some of these points when we get more into heavy
customization and building custom themes.

In the next chapter, we turn towards gaining a deeper understanding of how the
PHPTemplate theming engine powers the Drupal presentation layer and how the
features it provides can be used to best advantage.

Understanding PHPTemplate
Themes

This chapter digs more deeply into how PHPTemplate themes function in Drupal.

The exploration of the theme files contained in this chapter lays an important
foundation for understanding both how to create themes and how to modify existing
themes. This chapter discusses:

•	 The key files used in the theming process
•	 How these files impact themes
•	 The order of precedence among theme files

Though you don't need to be fluent in PHP to understand this chapter fully, a little
familiarity with the programming language will certainly make things easier. The
code examples in this chapter come from the default Drupal themes, Seven and Bartik.

What is PHPTemplate?
PHPTemplate is one of a family of applications known as theme engines (sometimes
referred to elsewhere as "template engines"). These applications serve a middleware
function and determine the coding syntax that can be used to create a theme. As the
name implies, PHPTemplate supports the popular PHP programming language for
theme creation.

PHPTemplate was created specifically for use with Drupal. Though, it is not the
only theming engine that can be used with Drupal, it is by far the most widely used.
With the arrival of Drupal 7, PHPTemplate is so closely integrated with the Drupal
core that it is extremely difficult to make a case for theming without the use of
PHPTemplate.

Understanding PHPTemplate Themes

[68]

Drupal 7 also continues a trend we saw in Drupal 6, that is, a proliferation in the
number of default templates and an increase in the granularity available with those
templates. In the past, there was only a limited number of default templates, and
they were located directly inside the engines directory. Template files are now more
numerous and are distributed throughout the system in a fashion that more logically
reflects the templates' association with the specific modules (see Appendix A for a
complete list).

As discussed in more detail later in this chapter, individual themes may also
include theme-specific templates that appear in the theme directory of each
individual theme.

PHPTemplate files follow a naming convention ending with the file
extension .tpl.php. For example: block.tpl.php, comment.
tpl.php, node.tpl.php, page.tpl.php.

How does it all work?
Theme engines are useful tools. In addition to the role as the bridge between the
functionality in the modules and the output in the presentation layer, a theme engine
also helps separate the work of the programmer from the work of the designer. As a
tool, PHPTemplate makes it possible for web programmers to work on the business
logic of an installation without having to worry too much about the presentation
of the content. In contrast, the web designers can focus entirely on the styling of
discreet bits of content and items comprising the layout and the interface. Developers
and designers can divide their tasks and optimize their work.

By comparison, other approaches to Drupal theming exhibit less flexibility. While
themes can be created directly in PHP without the use of a theme engine, pure PHP
themes are hard to decipher, more difficult to code, and awkward to preview.

Building themes that rely on the default theme engine represents the more
manageable approach to handling dynamic web applications. Every PHPTemplate
theme contains an HTML skeleton together with simple PHP statements that include
the dynamic data. The theme files are linked to the CSS files, allowing the dynamic
data to be styled and formatted with ease. Moreover PHPTemplate gives multiple
options for styling your website: use simple CSS, work with themable functions,
or create dedicated template files. The theme engine works in conjunction with
the default templates and functions and with the theme-specific template and
function overrides (if any) to produce the output the end user sees on the screen.
Templates can even contain other templates, allowing you to individually control the
appearance of the various elements on the page. The following illustration shows a
typical template structure:

Chapter 3

[69]

The PHPTemplate theme engine file can be found in the PHPTemplate directory
on the server (themes/engines/phptemplate). Default templates and functions
are located throughout the system, most frequently inside the relevant module
directories. The theme-specific elements are located in the active theme's directory.

PHPTemplate theme files are written in PHP and contain a series of includes and
conditional statements designed to detect the presence of elements that must be
added into the final output. The includes and conditional statements relate to things
such as the content of the site title, the presence and location of a logo file, the
number of active regions, and so on. Whether a statement is satisfied and the content
displayed is often the product of decisions made by the site administrator either in
the process of configuring the site or during the creation of the site's content and
functionality. The good news here is that much of the code you will see in a template
file is very basic and relates purely to the formatting—CSS styling and simple HTML.

Understanding PHPTemplate Themes

[70]

The key file in any PHPTemplate theme is page.tpl.php. The page.tpl.php file is
one of the only two required files (the other being the .info file) to create a useful
PHPTemplate theme. You can create an entire theme with only those two files, as
the default templates located throughout the Drupal system will do all the work—
if you let them. What normally happens, however, is that the theme also includes
additional files that provide theme-specific formatting that is either unique to the
theme or overrides the default styling.

The page.tpl.php file contains the statements that produce the output, together
with the CSS styling used to control the display. The example below shows a
typical application of a conditional statement to generate a specific bit of output:

<?php if ($site_slogan);?>
 <div id="site-slogan">
 <?php print $site_slogan; ?>
 </div>
<?php endif; ?>

In this segment, you see a conditional statement testing whether the $site_slogan
returns as true (that is, it is enabled) and if so, it displays the site slogan (produced
by the line <?php print $site_slogan; ?>).

You will also note that the site slogan is wrapped by a div with an id
of site-slogan. This is our first taste of how CSS integrates with the
templates to control the presentation on the screen.

The preceding example code deals with Drupal's site slogan function. Whether the
site slogan is displayed is determined by a parameter specified by the administrator
in the Theme Configuration Manager (discussed in Chapter 2, Working with the Default
Configuration and Display Options). The slogan text is set by the administrator in the
Site Information Manager. This parameter's value is stored in the database of your
Drupal site. The following exhibit shows how all these pieces work in harmony
together: The choices made by the administrator are stored in the database as $site_
slogan with the value: This is my site slogan!. $site_slogan is then displayed in
courtesy of a conditional statement in the page.tpl.php file.

Chapter 3

[71]

Putting it all together, it works like this:

1.	 The string named $site_slogan is stored in the database.
2.	 If there is a value for $site_slogan, then that value will appear on

the screen.
3.	 The user's browser applies to the resulting site slogan, the styling specified

by the div with the id "site-slogan".

New in Drupal 7: html.tpl.php
In previous versions of Drupal, the page.tpl.php file carried inside of it,
the information needed to produce the basic HTML structure of the Drupal
page. The page.tpl.php file contained the DOCTYPE, the stylesheets, the
scripts, and the closing tags needed to create valid markup.
With Drupal 7 this all has changed. Those basic elements have now been
removed from the page.tpl.php file and segregated into a new system
template, html.tpl.php.

Understanding PHPTemplate Themes

[72]

The new file is located in the modules/system directory and looks as follows:

?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php print
$language->language; ?>" version="XHTML+RDFa 1.0" dir="<?php print
$language->dir; ?>"<?php print $rdf_namespaces; ?>>

<head profile="<?php print $grddl_profile; ?>">
 <?php print $head; ?>
 <title><?php print $head_title; ?></title>
 <?php print $styles; ?>
 <?php print $scripts; ?>
</head>
<body class="<?php print $classes; ?>" <?php print $attributes;?>>
 <div id="skip-link">
 <a href="#main-content" class="element-invisible element-
 focusable"><?php print t('Skip to main content'); ?>
 </div>
 <?php print $page_top; ?>
 <?php print $page; ?>
 <?php print $page_bottom; ?>
</body>
</html>

You can see in the code that in addition to the DOCTYPE and the basic HTML
structure tags, the template brings in the stylesheets ($styles), the scripts
($scripts), and later in the code, the rendered page content ($page).

It's not generally recommended that you override this template,
but it is possible.

In the next chapter, we look at intercepting and overriding default templates.

Key PHPTemplate theme files
Let's take a deeper look at the key files involved in a PHPTemplate theme:
The .info file and the page.tpl.php file. To illustrate these files at work, I
will then look at how two different themes vary in their approaches.

Chapter 3

[73]

The role of the .info file
The .info file is one of the required files in a PHPTemplate theme. This file has a
configuration function and syntax similar to a .ini file. .info files are discussed in
length in Chapter 7, Dynamic Theming, but to give you a sample of what is happening,
here is the bartik.info file, which accompanies the Bartik theme (themes/bartik/
bartik.info):

; $Id: bartik.info,v 1.5 2010/11/07 00:27:20 dries Exp $

name = Bartik
description = A flexible, recolorable theme with many regions.
package = Core
version = VERSION
core = 7.x

stylesheets[all][] = css/layout.css
stylesheets[all][] = css/style.css
stylesheets[all][] = css/colors.css
stylesheets[print][] = css/print.css

regions[header] = Header
regions[help] = Help
regions[page_top] = Page top
regions[page_bottom] = Page bottom
regions[highlighted] = Highlighted

regions[featured] = Featured
regions[content] = Content
regions[sidebar_first] = Sidebar first
regions[sidebar_second] = Sidebar second

regions[triptych_first] = Triptych first
regions[triptych_middle] = Triptych middle
regions[triptych_last] = Triptych last

regions[footer_firstcolumn] = Footer first column
regions[footer_secondcolumn] = Footer second column
regions[footer_thirdcolumn] = Footer third column
regions[footer_fourthcolumn] = Footer fourth column
regions[footer] = Footer

settings[shortcut_module_link] = 0

; Information added by drupal.org packaging script on 2011-01-05
version = "7.0"
project = "drupal"
datestamp = "1294208756"

Understanding PHPTemplate Themes

[74]

Note how the file addresses basic configuration issues:

•	 The theme's name
•	 Description
•	 Version and compatibility info
•	 Theme engine required
•	 Stylesheets needed
•	 Regions included

To learn more about the .info file, visit the Drupal site at
http://drupal.org/node/171205.

The role of the page.tpl.php file
The page.tpl.php file, located inside the individual theme directory, plays a critical
role in any PHPTemplate theme. Let's look at an example page.tpl.php file; in this
case the default page.tpl.php, located in the core directory modules/system:

 <div id="page-wrapper"><div id="page">

 <div id="header"><div class="section clearfix">

 <?php if ($logo): ?>
 <a href="<?php print $front_page; ?>" title="<?php print
t('Home'); ?>" rel="home" id="logo">
 <img src="<?php print $logo; ?>" alt="<?php print t('Home');
?>" />

 <?php endif; ?>

 <?php if ($site_name || $site_slogan): ?>
 <div id="name-and-slogan">
 <?php if ($site_name): ?>
 <?php if ($title): ?>
 <div id="site-name">
 <a href="<?php print $front_page; ?>" title="<?php
print t('Home'); ?>" rel="home"><?php print $site_name; ?></
span>
 </div>
 <?php else: /* Use h1 when the content title is empty */
?>
 <h1 id="site-name">

Chapter 3

[75]

 <a href="<?php print $front_page; ?>" title="<?php
print t('Home'); ?>" rel="home"><?php print $site_name; ?></
span>
 </h1>
 <?php endif; ?>
 <?php endif; ?>

 <?php if ($site_slogan): ?>
 <div id="site-slogan"><?php print $site_slogan; ?></div>
 <?php endif; ?>
 </div> <!-- /#name-and-slogan -->
 <?php endif; ?>

 <?php print render($page['header']); ?>

 </div></div> <!-- /.section, /#header -->

 <?php if ($main_menu || $secondary_menu): ?>
 <div id="navigation"><div class="section">
 <?php print theme('links__system_main_menu', array('links'
=> $main_menu, 'attributes' => array('id' => 'main-menu', 'class' =>
array('links', 'inline', 'clearfix')), 'heading' => t('Main menu')));
?>
 <?php print theme('links__system_secondary_menu',
array('links' => $secondary_menu, 'attributes' => array('id' =>
'secondary-menu', 'class' => array('links', 'inline', 'clearfix')),
'heading' => t('Secondary menu'))); ?>
 </div></div> <!-- /.section, /#navigation -->
 <?php endif; ?>

 <?php if ($breadcrumb): ?>
 <div id="breadcrumb"><?php print $breadcrumb; ?></div>
 <?php endif; ?>

 <?php print $messages; ?>

 <div id="main-wrapper"><div id="main" class="clearfix">

 <div id="content" class="column"><div class="section">
 <?php if ($page['highlighted']): ?><div id="highlighted"><?php
print render($page['highlighted']); ?></div><?php endif; ?>

 <?php print render($title_prefix); ?>
 <?php if ($title): ?><h1 class="title" id="page-title"><?php
print $title; ?></h1><?php endif; ?>
 <?php print render($title_suffix); ?>
 <?php if ($tabs): ?><div class="tabs"><?php print
render($tabs); ?></div><?php endif; ?>
 <?php print render($page['help']); ?>
 <?php if ($action_links): ?><ul class="action-links"><?php
print render($action_links); ?><?php endif; ?>

Understanding PHPTemplate Themes

[76]

 <?php print render($page['content']); ?>
 <?php print $feed_icons; ?>
 </div></div> <!-- /.section, /#content -->

 <?php if ($page['sidebar_first']): ?>
 <div id="sidebar-first" class="column sidebar"><div
class="section">
 <?php print render($page['sidebar_first']); ?>
 </div></div> <!-- /.section, /#sidebar-first -->
 <?php endif; ?>

 <?php if ($page['sidebar_second']): ?>
 <div id="sidebar-second" class="column sidebar"><div
class="section">
 <?php print render($page['sidebar_second']); ?>
 </div></div> <!-- /.section, /#sidebar-second -->
 <?php endif; ?>

 </div></div> <!-- /#main, /#main-wrapper -->

 <div id="footer"><div class="section">
 <?php print render($page['footer']); ?>
 </div></div> <!-- /.section, /#footer -->

 </div></div> <!-- /#page, /#page-wrapper -->

Let's break down the default page.tpl.php file, and look at it in bite-sized functional
units (we'll leave the CSS until the next chapter).

If you look at the code you will see that the template relies largely on conditional
PHP statements to produce the output visible to the viewer. The following
excerpt includes the logo, the site name, and the site slogan. As the statements
are all conditional, the output will only be displayed to the site visitors, if the site
administrator has enabled the items in the Theme Configuration Manager:

 <?php if ($logo): ?>
 <a href="<?php print $front_page; ?>" title="<?php print
t('Home'); ?>" rel="home" id="logo">
 <img src="<?php print $logo; ?>" alt="<?php print t('Home');
?>" />

 <?php endif; ?>

 <?php if ($site_name || $site_slogan): ?>
 <div id="name-and-slogan">
 <?php if ($site_name): ?>
 <?php if ($title): ?>
 <div id="site-name">

Chapter 3

[77]

 <a href="<?php print $front_page; ?>" title="<?php
print t('Home'); ?>" rel="home"><?php print $site_name; ?></
span>
 </div>
 <?php else: /* Use h1 when the content title is empty */
?>
 <h1 id="site-name">
 <a href="<?php print $front_page; ?>" title="<?php
print t('Home'); ?>" rel="home"><?php print $site_name; ?></
span>
 </h1>
 <?php endif; ?>
 <?php endif; ?>

 <?php if ($site_slogan): ?>
 <div id="site-slogan"><?php print $site_slogan; ?></div>
 <?php endif; ?>
 </div> <!-- /#name-and-slogan -->
 <?php endif; ?>

Immediately following that code is the statement that prints the header region:

<?php print render($page['header']); ?>

The following lines relate to the display of the primary and secondary links:

 <?php if ($main_menu || $secondary_menu): ?>
 <div id="navigation"><div class="section">
 <?php print theme('links__system_main_menu', array('links'
=> $main_menu, 'attributes' => array('id' => 'main-menu', 'class' =>
array('links', 'inline', 'clearfix')), 'heading' => t('Main menu')));
?>
 <?php print theme('links__system_secondary_menu',
array('links' => $secondary_menu, 'attributes' => array('id' =>
'secondary-menu', 'class' => array('links', 'inline', 'clearfix')),
'heading' => t('Secondary menu'))); ?>
 </div></div> <!-- /.section, /#navigation -->
 <?php endif; ?>

Next, come the statements to include the breadcrumbs and the messages text:

<?php if ($breadcrumb): ?>
 <div id="breadcrumb"><?php print $breadcrumb; ?></div>
 <?php endif; ?>

 <?php print $messages; ?>

Understanding PHPTemplate Themes

[78]

A little further along in the code you can see the template produce the key regions
for this theme—these statements have been separated from the surrounding code to
show the syntax used:

Name of region Code including the region
Content region <?php print render($page['content']); ?>

Sidebar first region <?php print render($page['sidebar_first']);
?>

Sidebar second region <?php print render($page['sidebar_second']);
?>

Footer region <?php print render($page['footer']); ?>

In later chapters, we will look at how to enable these regions and make
them eligible for block assignment.

Note how this theme uses a conditional statement to include
the sidebars. The use of the conditional statement means
that the sidebar columns will only display if something is
assigned to the sidebar region. If nothing is assigned, then
the column neatly collapses and disappears from view.

Two contrasting examples
A look at the range of techniques used by the themes in the market shows a wide
variety of approaches to theming. Some themes, such as the admin-focused Seven
theme, keep it simple and require only a few theme-specific elements. Other themes,
such as Bartik, are more complex, and include a wide range of optional templates
and stylesheets.

PHPTemplate enables you to do as little or as much as you want. If you want to
create only the basics and rely on the default theming elements, you can. If you want
to override the default elements with your own customized versions, you can do
that, too.

The default Drupal 7 package includes two themes that demonstrate both
approaches.

Chapter 3

[79]

A simple PHPTemplate theme–Seven
The Seven theme, used for the admin system in Drupal 7, shows a direct and basic
approach to the creation of a PHPTemplate theme. If you check the themes/seven
directory on your Drupal installation, you will find the following files:

Notice that the author of Seven has chosen to create the theme using only a basic
selection of two templates: the page.tpl.php and maintenance-page.tpl.php.
There is also a bare minimum of stylesheets, with several of them only coming into
play in very specific circumstances, for example ie6.css, which helps iron out the
quirks found in the rendering by the Internet Explorer 6 browser.

Where additional templates or stylesheets are not specified, the default
Drupal files are applied. The default system files provide the most basic
level of formatting necessary for the styling of various page elements.

Understanding PHPTemplate Themes

[80]

The files page.tpl.php and maintenance-page.tpl.php are alternative versions
of default templates included in the core. The system will give precedence to these
template files in the theme directory over the default versions of the templates,
while other elements are still governed by the default templates located in the core.
Put another way, the author of the Seven theme is intercepting and overriding two
templates, a technique we shall explore in detail in this book—beginning in the next
chapter.

The Drupal system will give precedence to files located in the theme
directory. If the theme directory contains a version of one of the default
template files, the version in the theme will be used in place of the original
version. By taking advantage of the feature of the Drupal system, we are
able to easily intercept and override default templates and functions.

A more complex PHPTemplate theme–Bartik
By comparison, Bartik shows a more complex approach to the creation of a
PHPTemplate theme. If you check the themes/bartik directory on the server you
will find the following files. Note here that the theme developer has included not
only the page.tpl.php file, but also his own versions of other templates, as well
as a template.php file, and alternative .css files.

Chapter 3

[81]

The Bartik theme developer has provided the basic page.tpl.php file, in addition
to the following optional templates:

•	 comment.tpl.php

•	 comment-wrapper.tpl.php

•	 maintenance-page.tpl.php

•	 node.tpl.php

Understanding PHPTemplate Themes

[82]

The Bartik theme modifies only a few of the many default templates
distributed with Drupal. A list of all the system's templates and themeable
functions is included in the Appendix A.

The author of this theme also provides us with an example of another powerful
Drupal theming technique: The author includes with this theme the file template.
php. As you will see in later chapters, the template.php file is used to hold
preprocess functions and overrides to themable functions.

Alternative theme engines
At the time of writing, the release of Drupal 7 was only briefly past. Developers of
the various theme engines were still working to port their applications to Drupal.
While previous Drupal releases offered a number of theme engine options, not all
the alternative engines were yet compatible with Drupal 7. Engines that functioned
with the Drupal 6 series are not compatible with the Drupal 7 series. Here is a quick
overview of the alternatives that have existed.

PHPTAL
PHPTAL is a PHP implementation of the ZPT system. ZPT stands for Zope Page
Templates. ZPT is an HTML/XML generation tool created for use in the Zope project
(http://www.zope.org). ZPT employs TAL (Tag Attribute Language) to create
dynamic templates. Visit the Zope site to learn more about the origins of the system,
and how it all works.

TAL is attractive for several reasons. TAL statements come from XML attributes
in the TAL namespace that allow you to apply TAL to an XML or plain old HTML
document and enable it to function as a template. TAL generates pure, valid XHTML
and the resulting template files tend to be clean and easier to read than those created
with many other theme engines. One of the biggest advantages, however, is that
TAL templates can be manipulated using a standard WYSIWYG HTML/XML editor
and previewed in your browser, making the design work on your theme a relatively
easier task.

There are several minor drawbacks to PHPTAL:

•	 For purists, it is one level of abstraction further away from PHP, and
therefore, performs a bit slower than PHPTemplate (though this difference is
unlikely to be noticed by anyone and can be overcome by proper caching).

•	 Installation of PHPTAL requires Pear5 and PHP5 on your server. If you lack
either of these, you should explore other alternatives.

Chapter 3

[83]

Download PHPTAL for Drupal 6.x at http://drupal.org/project/phptal. The
Drupal extension includes a variety of extras including at least one PHPTAL theme.

Smarty
The Smarty theme engine allows you to create themes using the Smarty syntax. This
popular theme engine is widely used and there are a number of pre-existing themes
that are based on Smarty.

Smarty is a mature system and there exist a number of resources to help you learn
Smarty's syntax and conventions. Though the system implements another scripting
language inside the Drupal system (the Smarty tags), it performs very well. Smarty
parses the template files at runtime and does not re-compile unless the template
files change. Smarty also includes a built-in caching system to help you fine-tune
performance even further. There is also a variety of plug-ins available, which allows
you to extend Smarty's feature set. Download Smarty for Drupal 6.x at http://
drupal.org/project/smarty.

Summary
In this chapter, we've looked in more depth at how PHPTemplate themes work. You
should now have an awareness of the key files involved in a PHPTemplate theme
and some appreciation of how those files interact. The discussion of the order of
precedence among various theme files lays down a fundamental principle. You have
also seen examples of two different approaches to PHPTemplate themes and how
theme developers can override default theme files by placing alternative template
and CSS files inside the theme directory.

In the next chapter, we dive into the world of intercepts and overrides, and see how
to unlock the power of PHPTemplate themes.

Using Intercepts and
Overrides

In this chapter, we dive into the most powerful technique for customizing the output
of a Drupal site—the use of intercepts and overrides. The logical consistency of the
Drupal architecture lays the foundation for the approaches discussed in this chapter.
Through the application of simple naming conventions, you can intercept and
override the system's default styling. By creating your own templates and selectors
and then naming them properly, gaining near complete control over the output of a
Drupal site is a relatively easy thing to do. The techniques discussed in this chapter
enable you to customize the site as a whole or through any of its components; you
can even vary the styling by type of content, page, or user.

Intercepting and overriding output can be applied to three different, but closely
related, system features: templates, stylesheets (CSS), and themable functions.
Though how you implement the technique varies from feature to feature, the
underlying principles are exactly the same.

In this chapter, we will look at:

•	 The relationship between templates, stylesheets, and themable functions
•	 How to override styles and stylesheets
•	 How to override templates and themable functions
•	 How to use template variables

For the purpose of illustrating the examples in this chapter, we will be using the
Bartik theme, bundled with your default Drupal distro.

Let's begin with the big picture—how templates, stylesheets, and themable functions
work together to create the styling.

Using Intercepts and Overrides

[86]

Putting together the pieces
The themes included with your Drupal system are only one part of the architecture
that handles the output seen on the screen. Themes are the most accessible part of the
architecture, but the real power lies in understanding the components that make up
the theme and how those relate to default components that are contained elsewhere
in the Drupal core.

The default Drupal system contains a large number of theming
elements—templates, stylesheets, and themable functions—located
outside of the theme directories. Understanding how you can work with
those elements is the key to getting the most out of the system.

You've seen already that themes include a mix of files, including templates and
stylesheets. You have also seen that the Drupal system includes functions that
provide output and can, accordingly, be styled. To have the fullest control over your
site's look and feel, you need to be fluent not only with the themes, but also with the
underlying templates, stylesheets, and themable functions. Taken together, these
elements provide everything the vast majority of people will need to customize a site
to their needs.

As you work with Drupal over time, it is likely that you will use all of these elements
at one point or another. If you are working with an existing theme, you may only
modify the stylesheets to change the styling, or you may need to override a default
template with a customized version of your own. Alternatively, you may want to
go further and dig into the themable functions to address specific needs or create
customized forms. You can do all these things (and more!) by using the elements
discussed in this chapter.

Default templates
The default templates included with your Drupal system provide you with a quick
and easy starting place for common customizations. Among the most powerful
templates are the block and page templates, but there are many other templates
located within the directories of the various modules they impact.

If you wish to customize the output of one of the templates, simply copy the
template into your active theme directory and modify it as needed. Modifications
can be simple, such as changing selectors, or more complex, such as adding new
variables to the template.

Chapter 4

[87]

Appendix, Identifying Templates, Stylesheets, and Themable Functions
contains a listing of all the templates in the default system.

Default stylesheets
The default Drupal installation includes a mind-boggling assortment of stylesheets.
If you have installed additional extensions, you may well find that they come with
their own stylesheets, increasing the confusion factor even more.

While the Drupal approach to stylesheets may initially appear to be overkill in the
extreme, or at the very least a rather literal application of modularization, there is
a method behind the apparent madness. The use of multiple stylesheets not only
makes it easier to maintain individual modules, but also helps you find what you
need more quickly than having to deal with one or two massive files. The net result
of the approach is actually quite effective—that is, once you come to grips with the
mass of stylesheets that reside in your system!

In order to reduce the potential threats of conflicting stylesheets and absurd loading
times, Drupal provides a CSS preprocessing engine. This engine identifies the
required stylesheets, strips out the line breaks and spaces from all the files, and
delivers the styles in a combined single file. This feature is disabled by default;
if you wish to use it, you must access the Performance settings page inside the
Configuration Manager and enable the option labeled Aggregate and compress
CSS files.

While working on the themes of your Drupal site, you should make sure
the CSS compression is disabled. If the compression is enabled, you may
not be able to immediately see the impact of changes to your site's CSS.

Use of the CSS aggregation function results in the creation of a temporary
CSS files inside the sites/default/files directory. Do not try to
edit this file. While you can make changes to it, your changes will be lost
as the file is temporary. Make any changes to the CSS files located in the
active theme directory.

Using Intercepts and Overrides

[88]

The themable functions
Themable functions are theming elements that are less complex than templates
and are implemented by way of functions. There are a number of these and they
are scattered throughout the system. Many are located inside of the key files of
the individual modules. Drupal 7 relies less on themable functions than previous
versions, but they still play a key role in theming.

Appendix, Identifying Templates, Stylesheets, and Themable Functions contains
a listing of all the themable functions in the default system.

The default Drupal system does not provide an automated tool for the identification
of the themeable functions in Drupal. You can, however, identify them by their
names; all themable functions employ a consistent naming convention. Themable
functions use the prefix theme_. The naming convention makes it possible to work
your way through the various files to isolate all the functions. You can search for
them easily by setting up a tool to do the searching for you. One of the best tools is
the Theme Developer module, which you can download and install on your site. To
learn more go to the project page at http://drupal.org/project/devel_themer.

Overriding the default CSS
Drupal contains a large number of stylesheets—more than forty at the last count!
While there are a lot of stylesheets to juggle, with good planning and the use of
overrides, you can avoid having to track down individual stylesheets. Indeed, since
you will be placing your new styles in the theme directory, you won't need to work
directly with the multitude of the system's default stylesheets.

The key is being able to identify the styles that are relevant to the
elements on the screen; the Theme Developer module, or the Firebug
extension for Firefox can help with that. Learn more about both of these
useful theming tools in Chapter 10, Useful Extensions for Themers.

Drupal deals gracefully with the complexity of its multi-layered approach to CSS.
The order in which the stylesheets are compiled creates a hierarchy among the
stylesheets. While it is not necessary for you to be fluent with the details of the
manner in which the stylesheets are compiled, it is important to appreciate the
importance of the order of precedence the system employs. It is this hierarchy that
enables you to easily intercept and override the default styles.

Chapter 4

[89]

The key to intercepting and overriding styling is to take advantage of the order of
precedence by defining your custom styles in last style sheet compiled. The last file
compiled is highest in the hierarchy and any styles in that style sheet will override
any conflicting style definitions.

As the name implies, Cascading Stylesheets set precedence by cascade. While the last
item in the cascade has the last word in the final output, don't forget that properties
are also inherited. If the higher priority stylesheets do not include competing
properties within the definition of a selector, then the properties from lower priority
stylesheets will still be applied.

The theme's stylesheets, that is, the CSS inside the active theme directory take
precedence over all other stylesheets. If there are conflicting styles definitions, the
definition included in the theme's style sheet will have control. Where there is no
conflict, the definitions in the default Drupal stylesheets will be applied.

Remember, you always want to avoid modifying the default files, and
that includes both the CSS files in the core and those in any additional
installed modules.

Though it is not the subject of this chapter, you can also add your own stylesheets
to your theme; you are not restricted to a particular file or set of files. If you wish
to add additional stylesheets, you may do so by creating new stylesheets, placing
them inside the theme's directory, and then incorporating them by reference inside
your .info file. This topic is discussed further in Chapter 6, Creating a New Theme and
Chapter 8, Dealing with Forms.

Using Intercepts and Overrides

[90]

CSS overrides in action
Let's look at a basic example that illustrates the concept of overriding a default
system style.

The page title in your Drupal site is styled with the selector .title. The default
Bartik theme, however, contains no definition for the class .title. As there is no
definition in the theme's style sheet, the system will apply the default styling to the
page title.

The page title of a default Bartik installation appears as you see it in the following
screenshot:

Let's now override the default styling; to do so we simply need to add our own
definition for the .title class into the Bartik theme's style.css file.

Chapter 4

[91]

For simplicity's sake, we execute this example by changing the stylesheet
of one of the default themes. Note that normally you would never do this;
you would instead create a sub-theme and make your changes to the sub-
theme. Sub-theme creation is explained in the next chapter.

Add the following code to the Bartik theme's style sheet (/themes/bartik/style.
css):

.title {
 color: #666;
 font-style: italic;
}

Now save the file to your server, overwriting the original style.css file. Our
.title definition will now override the default styling. The results of the new
styling will be seen when you reload the page in your browser, as shown in the
following screenshot:

Using Intercepts and Overrides

[92]

This simple example illustrates how the order of precedence allows us to easily
override default style definitions—and it really is that simple. All we need to do is
put our changes in the active theme directory and our styles will take precedence
over the default style definitions. There's no need to make changes to the core files
and no need to hunt through dozens of stylesheets to find what you need; what you
need to do is find the active styles and then override them in your theme's CSS.

To override an existing style:

1. Find the styling applied to the item you want to change.
2. Write a new style definition.
3. Place the definition in the style.css file.
4. Repeat as needed!

Overriding core stylesheets
Just as you can override a selector by providing one of your own with the same
name, you can similarly override entire stylesheets. If you wish to replace an entire
core stylesheet with one of your own, you can just put a new file of the same name
in the active theme. However, best practices indicate that you should not stop there.
To avoid possible cascade problems and the loading of unnecessary files, you should
note the change in your theme's template.php file.

The function hook_css_alter() lets you replace, add, or subtract CSS files from the
page prior to the files being output. This involved a bit more work but is far cleaner
and more efficient. Here is an example, taken from the Seven theme's template.
php file. This shows hook_css_alter() being used to tell the system that the Seven
theme is overriding two of the core stylesheets in their entirety:

/**
 * Implements hook_css_alter().
 */
function seven_css_alter(&$css) {
 // Use Seven's vertical tabs style instead of the default one.
 if (isset($css['misc/vertical-tabs.css'])) {
 $css['misc/vertical-tabs.css']['data'] = drupal_get_path('theme',
'seven') . '/vertical-tabs.css';
 }
 // Use Seven's jQuery UI theme style instead of the default one.
 if (isset($css['misc/ui/jquery.ui.theme.css'])) {
 $css['misc/ui/jquery.ui.theme.css']['data'] = drupal_get_
path('theme', 'seven') . '/jquery.ui.theme.css';
 }
}

Chapter 4

[93]

To learn more about the function hook_css_alter() visit the API page
at http://api.drupal.org/api/drupal/modules--system--
system.api.php/function/hook_css_alter/7.

Overriding templates and themable
functions
The templates and themable functions employed by your site control the HTML
formatting for the final display of the contents. While CSS gives you one level of
control over look and feel to make significant changes to the functionality or the
page layout, you will need to work with the templates or the functions.

The default templates and themable functions are located in a variety of places
inside the distro. Moreover, since a theme developer can also create theme-specific
templates and themable functions, you may find these items located inside the active
theme's directory.

Like CSS styles, all templates and themable functions in a Drupal site can be
overridden. As we saw with stylesheets, there is a hierarchy at work inside Drupal.
The system will seek out functions and templates in a specific order, and apply the
first one it finds.

Note that we're seeing a trend in Drupal naming conventions, with more
and more people (and some parts of the Drupal documentation) now
referring to templates and functions by the generic term "hooks." While
the label is accurate, it isn't very specific and for the purposes of this book,
we will continue to specify whether we are talking about a template or a
function.

Various approaches to overriding the Default
Styling
There are various ways you can override the templates and functions. Each of the
approaches has advantages and disadvantages and you, as the theme developer,
will need to decide which approach best suits your needs.

The various approaches are:

•	 Overriding templates

Using Intercepts and Overrides

[94]

•	 Overriding functions
•	 Converting themable functions into new templates

In the following sections, we will look at each of these approaches.

The Theme Registry
The Theme Registry provides the Drupal system with a cached registry
of information on the available functions and templates. When you add
or remove theme functions or templates, you need to force the system
to update the Theme Registry. (Simply editing an existing function or
template, however, does not require you to clear the Registry.)
To update the Registry:
 1. Go to the Configuration Manager.
 2. Visit the Performance page.
 3. Select the option Clear cached data.
(If you have the Devel module installed, you can access this link more
quickly by enabling the Devel Block.)
This is an important step that should not be skipped, else you may not be
able to see your changes.

Overriding templates
This is an easy and powerful technique for managing customization. The essence
of this approach is to create a duplicate of one of the default template files and
then place it in the active theme's directory. The new files will intercept the default
template and override it as Drupal will always display the template in the active
directory rather than the default template.

The process of applying this technique is a straightforward matter of creating a
duplicate for the file, and then modifying the code inside the new file:

1.	 Identify the template you need.
2.	 Copy the template you wish to customize.
3.	 Paste the template into the theme directory, being careful to maintain

the original file name.
4.	 Make your changes to the code in the new template file.
5.	 Save the file.
6.	 Clear the Theme Registry.

Chapter 4

[95]

By applying the technique in this manner, you are able to make your changes
without having to modify the original core files. In the future, you benefit from this
when it comes to upgrading your Drupal site, because you do not have to worry
about the core upgrade overwriting your modifications. Additionally, your modified
files are portable: Should you wish to apply these changes to another theme, you
only need to copy the appropriate files into the theme's directory.

Up to this point, we have limited the discussion to overriding of the default (global)
template files and individual functions. However in Drupal, you can extend the
intercept and override concept further to achieve highly granular control of the page
templates that are called in various situations. You can, in other words, intercept and
override on a conditional basis.

For example, if you wish to have different templates used for different types of
content, you can create template files that are displayed only when that content is
displayed. You can also style individual incidents of modules and other output using
the techniques described in this chapter.

Let's look at one of the most common uses of this technique: The page.tpl.php file
is one of the most important in a PHPTemplate theme. This file is largely responsible
for the results that appear in the browser—it defines the overall layout of a page of
your site. As you might expect given the name of the file, it appears in a wide variety
of situations—it is the default page template.

Given the ubiquity of the file, there could be times when you want to customize a
particular page (or set of pages) to add variety to your site or to enhance usability.
To accomplish this task, you don't need to install another theme, instead, you simply
create another version of the existing page.tpl.php file and tailor it to display when
certain conditions are met. To control the display of the new template, we will turn
once again to Drupal's hierarchies and naming conventions.

The above approach is also commonly referred to as using "template
suggestions."
Let's assume you wish to customize the user pages, that is, the page seen
when a user selects the My account link. In the absence of any special
definitions, Drupal will use the page.tpl.php file. If you want a custom
page to be displayed, you will need to intercept the default page and
display the page of your choosing. To do so, you will need to create a new
template named page--user.tpl.php and place it in the active theme's
directory. Now, when a user clicks on the My account link, the system will
display the file page--user.tpl.php rather than the default page.tpl.
php file. Note that the syntax for naming template suggestions has changed
in Drupal 7. In the past, only one dash character was used. With Drupal 7,
you now have to use the "double-dash" to specify a suggestion. The single
dash is only used to separate two-part names.

Using Intercepts and Overrides

[96]

Taking this one step further, let's say you want to show a particular user a
customized user page. In that case, you would create a new template based on the
page.tpl.php file and name it so that it carries the user's ID, for example, page--
user-1.tpl.php (in this case, displaying the template to the user whose ID=1 when
they view the user page).

The logical, hierarchical nature of the system gives theme developers a great deal
of control over pages or elements of pages. Drupal is consistent and the same logic
applies throughout the system: The system prefers the specific to the general.
Drupal looks first for the most specific definition, and where that is absent, cascades
downward, finally displaying the default instance where nothing else is found.

The illustration shows how template suggestions can intercept and override the
default templates. The hierarchy works from specific to general, where the specific
takes precedence over the general.

By extension, the same principle can be applied to any tpl.php file. For example, a
common request is for node-specific styling, for example, having a unique template
tailored to the Blog content type. To achieve variable styling according to node, you
employ the same approach: Create the needed tpl.php files (applying the naming
convention) and place them in the theme directory. At runtime, Drupal will call the
appropriate files.

Chapter 4

[97]

For more information on this subject, as well as examples, please refer to Chapter 7,
Dynamic Theming.

Overriding functions
Themable functions are located in a variety of places throughout the system, most
typically inside the various modules. Themable functions can be overridden by
copying the functions and placing them in the active theme's template.php file,
where they can be modified to suit your needs.

The template.php file is an optional file in a PHPTemplate theme. When this file
is present, Drupal will look in this file for extra instructions. This file provides
a convenient place to define overrides of functions (among other things, like
preprocessing functions).

Here's a quick overview on the process used to implement this technique:

1.	 If it does not exist, create a new file named template.php inside your
theme directory (use proper PHP syntax).

2.	 Find the function you wish to customize.
3.	 Copy the original function and paste it into the template.php file.
4.	 Rename the function (as discussed below).
5.	 Make your changes to the renamed function in the template.php file

and save the file.
6.	 Clear the Theme Registry.

Again, note that by putting the changes inside a file in your theme directory, you can
add customization to a site without having to touch the core files. Another significant
advantage of this approach is simplicity: You can have one file (template.php) that
can be used to hold multiple overrides. This approach makes it easy to locate your
themable function overrides and manage them. The downside is that this is a theme-
specific approach to the issue of overrides; should your site employ more than one
theme, this approach may not be optimal.

Note that using functions has one clear advantage: In terms of site
performance, functions tend to be marginally faster than templates.

Using Intercepts and Overrides

[98]

The themable function hierarchy is invoked through the use of a naming convention.
The default themable functions can be identified by their names; all employ
the nomenclature theme_functionname(). For example, the default themable
function that controls the output of a Drupal breadcrumb trail is named theme_
breadcrumb().

The default breadcrumb function is located in the includes/theme.
inc file. We will be looking at this function in more detail later in this
chapter.

At runtime, Drupal is designed to look for overrides to themable functions before
applying the default functions. The system does this by looking for functions in the
following order (assuming your site employs the PHPTemplate engine):

•	 themename_functionname (for example, bartik_breadcrumb)
•	 theme_functionname (for example, theme_breadcrumb)

The naming convention is the key to your files being found and used
properly, so it must be followed scrupulously.

If the system does not find a function employing the specific theme namespace, the
system will apply the default function.

Converting themable functions into dedicated
templates
The final technique to master is the creation of individual template files that are
dedicated to overriding specific themable functions. Transforming a function into
a new template file gives you more flexibility than simply modifying the function
inside the template.php file. By creating templates out of themable functions, you
can strip down the function to its themable elements and make the theming more
accessible. Separate templates tend to be easier to work with, particularly for those
less fluent in PHP.

If you are a developer working with a designer, you can use this approach
to break the themable elements into bite-sized pieces, and then pass them
over to the designer for work on the look and feel. You can focus on the
functionality; the designer can focus on the presentation layer.

Chapter 4

[99]

The steps are as follows:

1.	 Create a new .tpl.php file inside your theme directory.
2.	 Name the new file by taking the function name, dropping the prefix, and

changing the underscores to dashes (also known as "hyphens"). For example,
the function theme_comment_view would become the template comment-
view.tpl.php.

3.	 Paste into the new file the code from the function that relates to the
formatting and the output.

4.	 Make your changes to the file's code.
5.	 Save the file.
6.	 Clear the Theme Registry.

Let's look at an example.

Suppose you would like to have a dedicated file for the breadcrumb function. The
name of the breadcrumb function is theme_breadcrumb. The original function is
located at includes/theme.inc.

Let's start by looking at the original function:

/**
 * Returns HTML for a breadcrumb trail.
 *
 * @param $variables
 * An associative array containing:
 * - breadcrumb: An array containing the breadcrumb links.
 */
function theme_breadcrumb($variables) {
 $breadcrumb = $variables['breadcrumb'];

 if (!empty($breadcrumb)) {
 // Provide a navigational heading to give context for breadcrumb
links to
 // screen-reader users. Make the heading invisible with .element-
invisible.
 $output = '<h2 class="element-invisible">' . t('You are here') .
'</h2>';

 $output .= '<div class="breadcrumb">' . implode(' » ',
$breadcrumb) . '</div>';
 return $output;
 }
}

Using Intercepts and Overrides

[100]

We'll need to extract the portion of that function that relates to the output and place
that into the template, adding the styling of our choice. In this example, I want to go
ahead make the You are here text visible to everyone, I want all the output on one
line, and I want to wrap it in divs for easy styling.

Here's how it can be done:

1.	 Create a new file, place it inside the Bartik theme directory and name it
breadcrumb.tpl.php.

2.	 Enter the following lines of code into your new breadcrumb.tpl.php file:
<div><?php print t('You are here
:'); ?>

<?php print implode(' » ', $breadcrumb);
?></div>

3.	 Save the file.

After you clear the site's Registry and refresh your browser, you will be able to see
your new breadcrumb layout.

Note that the code is basic HTML styling wrapped around PHP print statements.
This sort of basic code should be relatively easier for many people to deal with,
as opposed to trying to extract the relevant statement from the more complicated
function code (as you would have to do if you simply dropped all your function
overrides into the template.php file). All the designer needs to do now is provide
the desired definitions for the two CSS selectors, 'breadcrumb-title' and 'breadcrumb'.

Overrides in Action: A look at overrides in
Bartik
Let's have a look at how Drupal's default Bartik theme handles overrides. The
author of Bartik employs a number of overrides and the ways in which they are
implemented provide us with some easily accessible examples of overrides in action.

A look inside the themes/ directory shows the structure employed by Bartik and
gives us hints to this theme's approach to overrides. There's a directory dedicated to
holding the theme's numerous CSS files, another to hold the theme-specific templates
and you will also note the presence of a template.php file. In other words, the Bartik
theme has employed a mix of the approaches that I've discussed throughout this
chapter.

Chapter 4

[101]

Overriding the default template files
Bartik includes alternative versions of several default template files. The contents of
each of those files vary from their counterparts of the same name located elsewhere
in the core.

Bartik employs the PHPTemplate engine, accordingly when you open the
/templates directory you will note a number of files with the .tpl.php extension.
In addition to the basic page.tpl.php file, Bartik includes alternative versions of the
following default templates. Here's a list of the default templates the Bartik author
overrides, along with the locations of the original files:

Template Original location
comment.tpl.php /modules/comment/

Comment-wrapper.tpl.php /modules/comment/

node.tpl.php /modules/node/

maintenance-page.tpl.php /modules/system/

By way of example, let's compare the default version of the node.tpl.php file with
Bartik's modified version of the node.tpl.php file.

In the default template you will find the following code:

<div id="node-<?php print $node->nid; ?>" class="<?php print $classes;
?> clearfix"<?php print $attributes; ?>>

<?php print $user_picture; ?>

<?php print render($title_prefix); ?>
<?php if (!$page): ?>
<h2<?php print $title_attributes; ?>><a href="<?php print $node_url;
?>"><?php print $title; ?></h2>
<?php endif; ?>
<?php print render($title_suffix); ?>

<?php if ($display_submitted): ?>
<div class="submitted">
<?php print $submitted; ?>
</div>
<?php endif; ?>

<div class="content"<?php print $content_attributes; ?>>
<?php
 // We hide the comments and links now so that we can render them
later.
 hide($content['comments']);
 hide($content['links']);

Using Intercepts and Overrides

[102]

 print render($content);
 ?>
</div>

<?php print render($content['links']); ?>

<?php print render($content['comments']); ?>

</div>

The version of node.tpl.php included in the Bartik theme directory looks like this:

<div id="node-<?php print $node->nid; ?>" class="<?php print $classes;
?> clearfix"<?php print $attributes; ?>>

<?php print render($title_prefix); ?>
<?php if (!$page): ?>
<h2<?php print $title_attributes; ?>>
<a href="<?php print $node_url; ?>"><?php print $title; ?>
</h2>
<?php endif; ?>
<?php print render($title_suffix); ?>

<?php if ($display_submitted): ?>
<div class="meta submitted">
<?php print $user_picture; ?>
<?php print $submitted; ?>
</div>
<?php endif; ?>

<div class="content clearfix"<?php print $content_attributes; ?>>
<?php
 // We hide the comments and links now so that we can render them
later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
</div>

<?php
 // Remove the "Add new comment" link on the teaser page or if the
comment
 // form is being displayed on the same page.
 if ($teaser || !empty($content['comments']['comment_form'])) {
 unset($content['links']['comment']['#links']['comment-add']);
 }
 // Only display the wrapper div if there are links.
 $links = render($content['links']);
 if ($links):

Chapter 4

[103]

 ?>
<div class="link-wrapper">
<?php print $links; ?>
</div>
<?php endif; ?>

<?php print render($content['comments']); ?>

</div>

The two versions of the template look very similar, but there are several differences:

• The Bartik theme moves the placement of the user picture
• Bartik adds custom styling in several places
• Bartik adds logic that changes the handling of the Add new comment link

When the Bartik theme is active, the Drupal system will apply Bartik's version of
node.tpl.php and ignore the default file of the same name in the modules/node/
directory. The modified file in the Bartik theme takes precedence over the default file
of the same name.

The author uses the same technique with the other files in the /templates directory,
providing in these files alternative formatting to that included in the default
templates. Compare and contrast those files to view the differences.

Overriding themable functions
In addition to providing substitutes for some of the default template files, the
Bartik author has also included a template.php file, which includes both themable
function overrides and template preprocessing functions.

Preprocessing functions are used to modify existing variables or to create
new variables that can be used by the theming system. Preprocessing
functions are discussed in more detail in later chapters.

Let's look at an example: If you open the template.php file and examine the
contents, you will find an override to one of Drupal's themable functions: theme_
menu_tree().

It's useful to compare and contrast the original with the override.

The original function theme_menu_item() is located in /includes/menu.inc and
looks like this:

function theme_menu_tree($variables) {

Using Intercepts and Overrides

[104]

 return '<ul class="menu">' . $variables['tree'] . '';

The override is named bartik_menu_tree and resides in template.php. It looks
like this:

function bartik_menu_tree($variables) {
 return '<ul class="menu clearfix">' . $variables['tree'] . '';

Note the theme author has simply changed the selector applied to the function.

While the Bartik author could have achieved the same result by converting the
function into a template, I think you will agree that in this case creating an override
inside template.php is a more sensible approach than creating a dedicated template.
A simple change such as this really does not deserve the creation of a template,
unless of course you are preparing things for someone who is completely PHP
unfriendly.

We encourage you to explore further Bartik's template.php file; there are more
things you can learn from seeing how the Bartik developers approached the creation
of the theme, but for my purposes, the above examples are sufficient to provide the
foundation we need to move on.

Working with template variables
As we have seen previously, Drupal templates often rely upon variables that are
used to enhance and extend the functionality. The default Drupal variables cover the
most common (and essential) functions. Some of the Drupal variables are unique to
particular templates, others are common to all. In addition to the default variables,
you can also define your own variables.

Drupal 7 provides two opportunities for adding, deleting, or overriding the variables
for your templates. The template variables can be manipulated through the use
of either the process or preprocess functions. These functions are run prior to the
template being displayed, thereby allowing you to manipulate the variables for use
in the templates themselves. The use of variables process functions is an efficient
approach for handling logic needed for your theme and preferable to adding
processing logic inside your template files.

The template_process() function is a new addition in Drupal 7. In
Drupal 6, your only option was the template_preprocess() function.

Chapter 4

[105]

Variables created through the use of the functions can be used by any of your
templates. Note that the preprocess functions only apply to theming hooks
implemented as templates; plain theme functions do not interact with the
preprocessors.

In Drupal 5 and lower versions, the function _phptemplate_
variables served the same purpose as the preprocess function. For a list
of the expected preprocess functions and their order of precedence, see
http://drupal.org/node/223430.

Typically, if you wish to implement a variables process function for your theme, you
will add one (or more) of the following to your template.php file.

Name of preprocessor Application
[themeName]_preprocess Will apply to all hooks. This will run

before the process functions, if any.
[themeName]_preprocess_[hookname] Specific to a single hook. This will run

before the process functions, if any.
[themeName]_process Will apply to all hooks. This will run after

the preprocess functions, if any.
[themeName]_process_[hookname] Specific to a single hook. This will run after

the preprocess functions, if any.

When creating a function that specifies a hook name, the majority of the
time you will be naming a specific template. Note that the system only
permits you to name the base template; it is not possible to name template
suggestions.

Let's look first at intercepting and overriding a default variable and then at creating a
new variable.

Intercepting and overriding variables
You can intercept and override the system's existing variables. Intercepting a
variable is no different in practice from intercepting a themable function: You simply
restate it in the template.php file and make your modifications there, leaving the
original code in the core intact.

Using Intercepts and Overrides

[106]

To intercept an existing variable and override it with your new variable, you need
to use the function, add the function to your template.php file, according to the
following syntax:

<?php
function themename_preprocess(&$vars) {
 $vars['name'] = add your code here...;
 }
?>

Note that nothing should be returned from these functions. The variables
have to be passed by reference, as indicated by the ampersand before
variables, for example, &$vars.

Let's take a very basic example and apply this. Let's override $title in page.tpl.
php. To accomplish this task, add the following code to the template.php file:

<?php
function themename_preprocess(&$vars) {
 $vars['title'] = 'override title';
 }
?>

Remember to clear your theme registry after you save
your changes!

With this change made and the file saved to your theme, the string override title will
appear, substituted for the original $title value.

Making new variables available
The variables process functions also allow you to define additional variables in your
theme. To create a new variable, you must declare the function in the template.
php file. In order for your theme to have its preprocessors recognized, the template
associated with the hook must exist inside the theme. If the template does not exist in
your theme, copy (or create) one and place it in the theme directory.

The syntax is the same as that just used for intercepting and overriding a variable,
as seen above. The ability to add new variables to the system is a powerful tool and
gives you the ability to add more complex logic to your theme.

Chapter 4

[107]

By way of example, let's assume you want to add a disclaimer statement to all
the comments posted on your site. First, let's make the variable available to your
templates. To do this, add the following to your template.php file:

<?php
function bartik_gnu_preprocess(&$vars){
 $vars['disclaimer'] = t('Comments are unmoderated. The views
expressed are those of the comment author.');
}
?>

You now have a new variable named disclaimer.

Note that we've included the t function to provide for translation of the new
string. This is exactly the sort of processing you want to place outside the templates
themselves.

Next, to get the disclaimer statement to appear on your comments, open the
comment-wrapper.tpl.php file and add the following before the closing div:

<p><?php print $disclaimer; ?></p>

Flush your caches and then load a page upon which you have comments enabled.
You should see the new disclaimer text at the bottom of the comment form.

The preceding example is a simple one. You can make your variables as simple or
as complex as you see fit; the principles remain the same.

The Drupal API contains more information on template process and
preprocess functions. See http://api.drupal.org/api/drupal/
includes--theme.inc/function/theme/7 for more details.

Summary
Intercepts and overrides are your most powerful techniques for controlling Drupal
site output. In this chapter, we covered how to intercept and override the default
Drupal CSS, the themable functions, and the templates.

The techniques discussed require an understanding of Drupal naming conventions
and an appreciation for the hierarchies that dictate precedence. Proper use of the
naming conventions will enable you to extensively customize Drupal's appearance.

Using Intercepts and Overrides

[108]

This chapter also includes a review of various alternative techniques for handling
themable functions, together with the advantages of each. If you engage in a bit of
planning, the step-by-step instructions introduced in this chapter should allow you
to get started with overrides and to even create some conditional styling.

In the next chapter, we take an in-depth look at techniques for customizing an
existing theme.

Customizing an Existing
Theme

With the arrival of Drupal 6, sub-theming really came to the forefront of theme
design. While previously many people copied themes and then re-worked them
to achieve their goals, that process became less attractive as sub-themes came into
favor. This chapter focuses on sub-theming and how it should be used to customize
an existing theme.

For the purpose of illustrating the examples in this chapter, we'll be using the Bartik
theme, which is included in the default Drupal 7 package. Among the topics we will
cover:

•	 Selecting a base theme
•	 Creating a sub-theme
•	 Customizing your sub-theme

We'll start by looking at how to set up a workspace for Drupal theming.

Setting up the workspace
Before you get too far into attempting to modify your theme files, you should put
some thought into your tools. There are several software applications that can make
your work modifying themes more efficient. Though no specific tools are required
to work with Drupal themes, you could do it all with just a text editor—there are a
couple of applications that you might want to consider adding to your tool kit.

Customizing an Existing Theme

[110]

The first item to consider is browser selection. Firefox has a variety of extensions
that make working with themes easier. The Web Developer extension, for example,
is hugely helpful when dealing with CSS and related issues. We recommend the
combination of Firefox and the Web developer extension to anyone working with
Drupal themes. Another extension popular with many developers is Firebug, which
is very similar to the Web developer extension, and is indeed more powerful in
several regards.

Pick up Web developer, Firebug, and other popular Firefox add-ons
at https://addons.mozilla.org/en-US/firefox/.

There are also certain utilities you can add into your Drupal installation that will
assist with theming the site. Two modules you definitely will want to install are
Devel and Theme developer. Theme developer can save you untold hours of digging
around trying to find the right function or template. When the module is active all
you need to do is click on an element and the Theme developer pop-up window will
show you what is generating the element, along with other useful information like
potential template suggestions. The Devel module performs a number of functions
and is a prerequisite for running Theme developer.

Download Devel from: http://drupal.org/project/devel. You
can find Theme developer at: http://drupal.org/project/devel_
themer.

Note that neither Devel nor Theme Developer are suitable for use in a
development environment—you don't want these installed and enabled
on a client's public site, as they can present a security risk.

When it comes to working with PHP files and the various theme files, you will
also need a good code editor. There's a whole world of options out there, and the
right choice for you is really a personal decision. Suffice it to say: as long as you are
comfortable with it, it's probably the right choice.

Chapter 5

[111]

Setting up a local development server
Another key component of your workspace is the ability to preview
your work—preferably locally. As a practical matter, previewing Drupal
themes requires the use of a server; themes are difficult to preview with
any accuracy without a server to execute the PHP code. While you can
work on a remote server on your webhost, often this is undesirable due to
latency or simple lack of availability. A quick solution to this problem is
to set up a local server using something like the XAMPP package (or the
MAMP package for Mac OSX).
XAMPP provides a one step installer containing everything you need
to set up a server environment on your local machine (Apache, MySQL,
PHP, phpMyAdmin, and more). Visit http://www.ApacheFriends.
org to download XAMPP and you can have your own Dev Server set up
on your local machine in no time at all.

Follow these steps to acquire the XAMPP installation package and get it set up on
your local machine:

1.	 Connect to the Internet and direct your browser to http://www.
apachefriends.org.

2.	 Select XAMPP from the main menu.
3.	 Click the link labeled XAMPP for Windows.
4.	 Click the .zip option under the heading XAMPP for Windows.
5.	 Note that you will be re-directed to the SourceForge site for the actual

download.
6.	 When the pop-up prompts you to save the file, click OK and the installer will

download to your computer.
7.	 Locate the downloaded archive (.zip) package on your local machine, and

double-click it.
8.	 Double-click the new file to start the installer.
9.	 Follow the steps in the installer and then click Finish to close the installer.

That's all there is to it. You now have all the elements you need for your own local
development server.

Customizing an Existing Theme

[112]

To begin, simply open the XAMPP application and you will see buttons
that allow you to start the servers.
To create a new website, simply copy the files into a directory placed
inside the /htdocs directory. You can then access your new site by
opening the URL in your browser, as follows: http://localhost/
sitedirectoryname.

As a final note, you may also want to have access to a graphics program to handle
editing any image files that might be part of your theme. Again, there is a world of
options out there and the right choice is up to you.

Planning the modifications
A proper dissertation on site planning and usability is beyond the scope of this
book. Similarly, this book is neither an HTML nor a CSS tutorial; accordingly, in this
chapter we are going to focus on identifying the issues and delineating the process
involved in the customization of an existing theme, rather than focusing on design
techniques or coding-specific changes.

Any time you set off down the path of transforming an existing theme into
something new, you need to spend some time planning. The principle here is
the same as in many other areas. A little time spent planning at the frontend
of a project can pay off big in savings later.

When it comes to planning your theming efforts, the very first question you have
to answer is whether you are going to customize an existing theme or whether
you will create a new theme. In either event, it is recommended that you work
with sub-themes. The key difference is the nature of the base theme you select,
that is, the theme you are going to choose as your starting point.

Chapter 6, Creating a New Theme, deals with the topic of creating new
themes.

In sub-theming, the base theme is the starting point. Sub-themes inherit the parent
theme's resources; hence, the base theme you select will shape your theme building.
Some base themes are extremely simple, designed to impose on the themer the
fewest restrictions; others are designed to give you the widest range of resources
to assist your efforts. However, since you can use any theme for a base theme, the
reality is that most themes fall in between, at least in terms of their suitability for use
as a base theme.

Chapter 5

[113]

Another way to think of the relationship between a base theme and a sub-
theme is in terms of a parent-child relationship. The child (sub-theme)
inherits its characteristics from its parent (the base theme). There are no
limits to the ability to chain together multiple parent-child relationships; a
sub-theme can be the child of another sub-theme.

When it comes to customizing an existing theme, the reality is often that the selection
of the base theme will be dictated by the theme's default appearance and feature
set; in other words, you are likely to select the theme that is already the closest to
what you want. That said, don't limit yourself to a shallow surface examination
of the theme. In order to make the best decision, you need to look carefully at the
underlying theme's file and structures and see if it truly is the best choice. While the
original theme may be fairly close to what you want, it may also have limitations that
require work to overcome. Sometimes it is actually faster to start with a more generic
theme that you already know and can work with easily. Learning someone else's
code is always a bit of a chore and themes are like any other code—some are great,
some are poor, most are simply okay. A best practices theme makes your life easier.

In Chapter 6, Creating a New Theme, I list a number of third-party base
themes that are great starting points for themers.

In simplest terms, the process of customizing an existing theme can be broken into
three steps:

1.	 Select your base theme.
2.	 Create a sub-theme from your base theme.
3.	 Make the changes to your new sub-theme.

Why it is not recommended to simply modify the theme directly? There are two
following reasons:

•	 First, best practices say not to touch the original files; leave them intact so
you can upgrade them without losing customizations.

•	 Second, as a matter of theming philosophy, it's better to leave the things you
don't need to change in the base theme and focus your sub-theme on only the
things you want to change. This approach to theming is more manageable
and makes for much easier testing as you go.

Customizing an Existing Theme

[114]

Selecting a base theme
For the sake of simplicity, in this chapter we are going to work with the default
Bartik theme. We'll take Bartik, create a new sub-theme and then modify the sub-
theme to create the customized theme. Let's call the new theme "JeanB".

Note that while we've named the theme "JeanB", when it comes to naming
the theme's directory, we will use "jeanb" as the system only supports
lowercase letters and underscores.

In order to make the example easier to follow and to avoid the need
to install a variety of third-party extensions, the modifications we will
make in this chapter will be done using only the default components.
Arguably, when you are building a site like this for deployment in the
real world (rather than simply for skills development) you might wish to
consider implementing one or more specialized third-party extensions to
handle certain tasks. See Chapter 10, Useful Extensions for Themers for
a discussion of useful extensions that aid solving common site building
issues.

Creating a new sub-theme
The steps involved in creating a new sub-theme are detailed as follows, but in a
nutshell, it works like this:

1. Make a copy of the theme directory (and its contents).
2. Rename the directory.
3. Delete the files you don't need.
4. Update the theme name inside the files you want to keep.
5. Create a new stylesheet.
6. Update the .info file.

So, let's get started.

Create a copy of the base theme
Access your Drupal installation on your server, and then make a copy of the Bartik
theme directory (located at /themes/bartik).

Chapter 5

[115]

Create the sub-theme in a new directory
Paste the copy of the directory containing the Bartik files into the /sites/all/
themes directory and rename it to reflect our new theme's name: jeanb. So you
should now have a new directory at: sites/all/themes/jeanb.

Delete the files you don't need
Our sub-theme will inherit mostly everything from the base theme. The exception
being the .info file (and a new stylesheet that we will create later). Given that
inheritance is the norm, you should eliminate everything from the sub-theme that
you don't plan to change. In other words, if there's no change planned for the file,
delete it from the sub-theme's directory.

For purposes of this example, let's assume that we want to add a custom template for
the front page and that we need the template.php file for some themable function
overrides. Given those requirements, let's keep those two files, plus our .info file,
and let's get rid of everything else. The next step, therefore, is to open up our new
directory and delete everything except .info, /templates/page.tpl.php, and
template.php. Also keep the /css directory, but delete all the contents; we will use
that directory to hold our sub-theme's new CSS files.

Note that there's no reason to keep all that stuff inside the template.php file; go
ahead and clean out the file. If you decide at a later stage to override any of the
file contents, you can always copy it from the original file and add it to our new
template.php. Go ahead and clean out your template.php file now—leave only the
<?php at the top (that's important!).

Update the theme name throughout the
sub-theme
We need to change every occurrence of "bartik" in our sub-theme to "jeanb". If you've
got a code editor, you can run a find/replace to get this done, if not, you'll need to
crack open each file and do this.

Create a stylesheet for your sub-theme
Next, let's create a new .css file. This is a requirement for a valid sub-theme; you
need at least one stylesheet. Create an empty file, name it jeanb.css, and put it in
the /css directory.

Customizing an Existing Theme

[116]

Update the sub-theme's .info file
The final step in the process is to update your .info file. First, rename it jeanb.info
(if you have not already done so when you changed all the occurrences of "bartik" to
"jeanb".) Next, open up the file and perform the following operations on the contents:

1.	 Make sure the name has been updated.
2.	 Update the description line as you see fit – this information will appear

inside the Theme Manager as a description for the theme.
3.	 Delete the lines for package, version, and core.
4.	 Add a new line: base theme = bartik.
5.	 Declare our new stylesheet by adding this line: stylesheets[all][] = css/

jeanb.css.
6.	 Delete all other stylesheet declarations.
7.	 Save the file.

At the end of this process, your jeanb.info file should look like this:

; $Id: bartik.info,v 1.5 2010/11/07 00:27:20 dries Exp $

name = JeanB
description = A new sub-theme based on Bartik.
base theme = bartik
engine = phptemplate

stylesheets[all][] = css/jeanb.css

regions[header] = Header
regions[help] = Help
regions[page_top] = Page top
regions[page_bottom] = Page bottom
regions[highlighted] = Highlighted

regions[featured] = Featured
regions[content] = Content
regions[sidebar_first] = Sidebar first
regions[sidebar_second] = Sidebar second

regions[triptych_first] = Triptych first
regions[triptych_middle] = Triptych middle
regions[triptych_last] = Triptych last

regions[footer_firstcolumn] = Footer first column
regions[footer_secondcolumn] = Footer second column
regions[footer_thirdcolumn] = Footer third column
regions[footer_fourthcolumn] = Footer fourth column
regions[footer] = Footer

Chapter 5

[117]

settings[shortcut_module_link] = 0

; Information added by drupal.org packaging script on 2011-01-05
version = "7.0"
project = "drupal"
datestamp = "1294208756"

Note that sub-themes do not inherit custom regions from the parent
theme. Therefore if you want to use the custom regions in the original
Bartik, you will need to re-specify them, as you can see in the preceding
.info file.

Additionally, your/sites/all/themes directory should look like the following:

Customizing an Existing Theme

[118]

If all has gone according to plan, the new JeanB can now been seen inside the
Disabled Themes section of your site's Theme Manager, as shown in the following
figure:

At this point, go ahead and make the theme visible on the site so that you can see the
impact of my work. To do this, select the option to Enable and set default from the
links that you see immediately below JeanB in the previous screenshot.

If you view the frontend of the site, you will see that there is a very little difference
between the presentation of your new JeanB and the original Bartik. One thing you
will notice is that the logo file is missing—the base theme's logo file is not inherited
by the sub-themes, so you will need to add your own logo.

Now, at last, you are ready to begin implementing your customizations.

Chapter 5

[119]

Note that the Bartik theme uses the Color module functionality. In my
preceding example, I have not included porting the Color module into
this sub-theme. The Color module functionality is not inheritable. If you
wanted to use that feature in your sub-theme, you would need to include
in the sub-theme the /color directory together with all its contents and
the /css/colors.css file. You would also need to declare the colors.
css file in the jeanb.info file.

Customizing the sub-theme
The first question you need to ask yourself is: Do I need to customize the styling,
or do I need to customize the structure? (Of course there is always the chance that
the answer to both is 'yes.') We pose this question as it frames the next steps: If you
only need to customize the styling, then you just need to look at working with the
theme's CSS. Assuming that adequate selectors are already in place in the code, this
means simply overriding some of the system's many styles. If, on the other hand, you
need to customize the structure, then you are likely needed to override templates or
themable functions.

Note that the Drupal theme system caches template files, theme functions,
and .info files. Accordingly, as you work on the theme and make
changes to any of those elements, you should refresh Drupal's cache in
order to see your change take effect immediately.

The process of customizing a theme into something new consists of a set of tasks
that can be categorized into three groups:

1.	 Configuring the theme.
2.	 Adapting the CSS.
3.	 Adapting the templates and themable functions, if needed.

Let's look first at how you can make the most out of configuring your new
sub-theme.

Customizing an Existing Theme

[120]

Configuring the theme
Chapter 2, Working with the Default Configuration and Display Options of this book is
completely dedicated to working with the configuration options in Drupal's theme
Manager, so, we are not going to go through all those options again here. Moreover,
if you can achieve the customization that you need through simple configuration,
there would be no need to set up a sub-theme; instead, you would simply install the
theme you need and then configure it. Configuration changes are not at risk during
upgrades and patches.

Still, in terms of work process, it is worth noting that you should do your
configuration before you get started working on your styling and other
customizations. If you don't set everything up now—and that includes installing all
required modules and positioning your blocks—then you sometimes later find that
changes made in one area impact another in an unexpected fashion. It's better to set
up everything that you can at the beginning and then, as you work, the impact of
your styling and overrides become more obvious and easier to deal with.

Don't forget to check user permissions as you enable new modules!

Auto-generate your dummy content
Temporary dummy content allows you to see text on the screen as you
make your changes, and helps you to judge more easily your fonts,
colors, spacing, and margins. The Devel module, referenced earlier in this
chapter, allows you to automatically populate your site with sample data,
including comments, taxonomies—even menus and users! This brilliant
little utility can spare you the tedium of creating pages of lorem text,
comments, and so on. To use this feature, you must first install the Devel
module and then enable the option Devel generate (this option is visible
in the Module Manager). Now, when you need sample content, visit the
Configuration Manager and look for the heading Generate items. Select
what you want from the list. Simple, fast, painless—another reason you
will love the Devel module.

Chapter 5

[121]

Adapting the CSS
If you are happy with the structure of your base theme and you only need to tailor
the styling, it is conceivable that you will need to do no more than configure your
theme and customize the CSS. Given the wealth of CSS selectors built into the
system, you can do quite a bit using only the CSS—particularly if you select a pure
CSS base theme and you are handy with CSS.

We've set up JeanB as a sub-theme of the Bartik theme. As a result, the JeanB theme
has available to it not only the stylesheets in the parent theme (Bartik) but also any
additional stylesheets existing in the JeanB directory, for example, the file we created
earlier, jeanb.css.

•	 Override a single selector: To override or add to an existing selector, simply
place another version of the selector in the jeanb.css file. Don't forget that
properties in the original selector will be inherited if there are no conflicting
properties in the jeanb.css file.

•	 Adding new selectors: To create a new selector, simply put it into the jeanb.
css file.

•	 Override an entire stylesheet: To override an entire stylesheet, place a
stylesheet of the same name in the JeanB/css directory and then add it into
the JeanB.info file. This approach can be used regardless of whether you are
trying to override the base theme's CSS or one of the core CSS files located
elsewhere in the system. In either event, as long as the stylesheet names are
the same, Drupal will give precedence to the style sheet defined in the active
theme's directory.

The concepts and principles that lie behind using intercepts and overrides
are introduced in Chapter 4, Using Intercepts and Overrides.

Precedence and Inheritance
Where one style definition is in an imported stylesheet and another in the
immediate style sheet, the rule in the immediate style sheet (the one that
is importing the other style sheet) takes precedence.
Where repetitive definitions are in the same stylesheet, the one furthest
from the top of the stylesheet takes precedence in the case of conflicts;
where repetitive definitions are in the same stylesheet, non-conflicting
attributes will be inherited.

Customizing an Existing Theme

[122]

Modifying a default template
If you wish to modify the structure of your base theme, or if you need to provide
specific page templates for specific pages or groups of pages, then you will need to
look into going further and tapping into the power of the Drupal theming hooks—
the templates and the themable functions. In this section of the chapter, I look at
various issues relating to overriding templates from within a sub-theme; in the next
section I look at working with the themable functions.

The Bartik theme includes a number of templates that are intended to override their
counterparts in the Drupal core. Inside Bartik's/templates directory you will find:

•	 comment-wrapper.tpl.php

•	 comment.tpl.php

•	 maintenance-page.tpl.php

•	 node.tpl.php

•	 page.tpl.php

All of the templates previously listed are inherited by JeanB. Inside your sub-theme
you have the same choices you would have if you were creating a new base theme:
You can override the templates in the base theme, or you can create completely new
overrides that take precedence over templates located elsewhere in the core, or you
can create new overrides using template suggestions.

•	 Overriding a template in the base theme: To modify any of these templates,
simply make a copy of the template and paste it into JeanB's/templates
directory—that's all it takes.

•	 Override a core template: To override a system template, you use exactly the
same approach, that is, make a copy of the original template and paste it into
JeanB's/templates directory.

•	 Create a template suggestion: You will note that I left the page.tpl.php
template inside JeanB when I created the sub-theme. This is because I want to
create a custom home page template for JeanB. As discussed in Chapter 4, we
use a specific template suggestion that tells the system to use this template
for the home page. To make this work, simply duplicate page.tpl.php and
change the name to page--front.tpl.php. Make your changes to the new
template and you now have a customized template that is served when a
visitor views the home page.

If you wish to use a template suggestion, the suggestion and the base
template must be placed in the same directory.

Chapter 5

[123]

For more solutions to common theme issues, see Chapter 9, Overcoming
Common Challenges in Drupal Theming.

Overriding a themable function
You can create themable functions overrides that are specific to your sub-theme by
using the template.php file located inside the sub-theme's directory.

Function overrides and preprocess functions located in the base theme are
inherited by your sub-themes. If you don't need to add function overrides
or preprocess functions to your sub-theme, there is no need to have a
template.php file inside your sub-theme directory.

•	 Overriding a base theme function override: If you wish to modify one of
the function overrides already created inside the base theme, you will need
to copy the code from the base theme's template.php file, paste it into the
sub-theme's template.php, and modify the function's name to be consistent
with the sub-theme. For example, in the Bartik theme's template.php file,
we will find an override to the function theme_menu_tree().

functionbartik_menu_tree($variables) {
return '<ul class="menu clearfix">' . $variables['tree'] . '</
ul>';
}

•	 To customize this for JeanB, you will need to copy the function, paste it into
JeanB's template.php file, and then rename it from bartik_menu_tree to
jeanb_menu_tree. The new code will appear like this:

functionjeanb_menu_tree($variables) {
return '<ul class="menu clearfix">' . $variables['tree'] . '</
ul>';
}

Remember to clear the Drupal cache each time you change a themable
function or template.

•	 Overriding a core themable function: Simply copy the original function,
place it in the sub-theme's template.php file, and modify the function name
to reflect the sub-theme's name.

Customizing an Existing Theme

[124]

• Converting a themable function into a dedicated template: Create a new
template file inside your sub-theme. Name the file in line with the name of
the function, converting any underscores to hyphens. (Using the example
seen previously, if you wanted to convert the function theme_menu_tree()
into a template, then the template would be name menu-tree.tpl.php.)
Next copy the output portion of the original function and paste it into the
template file.

Preprocess functions can also be added into your sub-theme, via the
template.php file. Working with preprocess functions is covered
in Chapter 4. As we saw with the themable functions, the name of
the preprocess function must be modified to reflect the name of the
sub-theme.

Summary
This chapter began with a discussion of the tools you will need to begin working
on your themes in earnest. The Devel module and the Theme Developer module
are two of the key tools you will want to have at your disposal.

We learned to manage the customization of an existing theme. In this chapter
we dealt for the first time with one of the most powerful techniques available to
themers—the use of sub-themes. Through the implementation of a sub-theme,
the themer is able to leverage the power of an existing base theme while retaining
the flexibility needed to customize virtually every element of the styling and the
structure.

This chapter showed how to create a sub-theme and then how to implement various
common approaches to customizing that sub-theme. In the next chapter we look at
how you can create a completely new theme for your Drupal 7 site.

Creating a New Theme
This chapter takes us into the world of creating a new Drupal theme. While many
people may undertake a theme project by copying, and then customizing, the files
of an existing theme, in this chapter we cater to the purists who want to do it all
themselves.

To follow fully the examples in this chapter, you will need your favorite code editor
and, preferably, access to a server upon which to preview your work. In the section
dealing with sub-themes, we will be using as our example the Fusion theme, which
you can download from Drupal.org.

In this chapter, we'll cover:

•	 The basics of creating a new theme employing the PHPTemplate engine
•	 The various tasks required to produce a fully functional theme
•	 New theme creation with the aid of a sub-theme
•	 Creating a standalone theme.

But, before you begin building your theme, you should always spend a bit of time
planning, so we will begin with some advice on planning the build.

Planning the build
Though in this chapter we focus on two techniques for creating Drupal themes,
there are in fact three different approaches available to you; they are:

•	 Creating a new PHPTemplate theme via sub-theming
•	 Creating a new PHPTemplate theme without sub-theming
•	 Creating a theme without the use of a theme engine

Creating a New Theme

[126]

The first two approaches rely on the PHPTemplate theme engine bundled with your
Drupal site. These approaches are strongly recommended. The last approach, that is,
the creation of a pure PHP theme, does not rely on a theme engine of any variety.

While in the past you could make an argument for theming a Drupal site in pure
PHP, that is, without the use of a theme engine, today it is a hard position to sustain.
The PHPTemplate theming engine is so closely integrated with the Drupal core that
trying to theme the site without it is simply a way to make your life difficult.

The second option listed, creating a new theme without the use of sub-theming, is
only going to be the right choice for a few people. Typically, those people will fall
into one of two groups: Either people who are creating their new theme to share
with others (for example, by releasing the theme on Drupal.org), or people who are
diehard purists—those that simply prefer to do things their own way.

The first option listed, creating a new theme by sub-theming, is the right approach
for the majority of people and the recommended approach, for the reasons discussed
below.

If you are a Drupal developer, or simply plan to work on more than
one Drupal site, it is recommended that you take the time to identify
a base theme that you like, learn it in depth, and adopt it as your
preferred starting point for theme creation. Many Drupal developers
have their own preferred base theme and they use that theme for all,
or virtually all, of the sites they produce. Having a 'pet' theme that you
know inside and out can really streamline your work.

The advantages of using a sub-theme for creating your new theme are:

•	 Faster site build
•	 Common resources are already coded
•	 The base theme can be upgraded separately
•	 Your code is reusable

Like almost everything else, there are disadvantages, too. They are:

•	 Heavier markup than a pure custom build
•	 Adds complexity to the admin system

In the pages that follow, we go through the two recommended approaches to theme
creation, starting with sub-theming.

Chapter 6

[127]

Creating a new theme through
sub-theming
Creating a new theme by creating a sub-theme is faster and easier than theming from
scratch. There exist a number of themes that have been specifically built with this
purpose in mind—so-called base themes or "starter" themes. Though you can create
a sub-theme from any other theme, starter themes are tailored to providing you with
useful resources, such as an assortment of common templates and stylesheets. Some
starter themes are very basic, others are feature-rich.

Selecting a base theme
If you have decided to proceed via sub-theme creation, the first issue you need to
address is selection of a base theme. All sub-themes are premised on a base theme.
You should do a bit of research to identify the base theme that is most suitable for
your needs. It's best to select a theme that has the features that you want and, ideally,
exhibits some of the layout and styling you want. Among the candidates, you might
want to consider are:

•	 Adaptivetheme: The Adaptivetheme starter theme is one of the more
feature-rich options. The theme includes a wide array of layout options
and styles that can be implemented directly from the Theme Manager. The
package includes a ready-to-use sub-theme and the project page has links to
documentation and tutorial resources. The only downside to Adaptivetheme
is that it does employ a few non-standard implementations that may make
it a slightly less attractive choice, if you are a purist. To learn more and
download the theme, visit the Adaptivetheme project: http://drupal.org/
project/adaptivetheme.

•	 Fusion: This is a nice starter theme with numerous features and ready-to-use
sub-themes. Fusion includes themes settings that allow the administrator
to control layout and style options from the Theme Configuration manager.
The theme includes two sub-themes; one full-featured, the other minimalist.
The theme implements the 960 grid system and includes an option to use the
Superfish drop-down menus. The Skinr module is also integrated with this
theme, though it is not a requirement. Visit the Fusion project at: http://
drupal.org/project/fusion.

Creating a New Theme

[128]

•	 Genesis: Genesis promotes itself as a "standards compliant, accessible, and
semantically rich starter theme". The theme employs a modular CSS and
flexible layout options, and has an emphasis on web accessibility compliance
seen in a few other themes. While Genesis provides a number of options, it
also relies on non-standard approach to multi-column layout formats, known
as GPanels. Learn more about Genesis at: http://drupal.org/project/
genesis.

•	 Zen: This theme is one of the most popular in the Drupal collection. Zen has
been around for years but continues to evolve and improve. The current
version is tailored for use as a starter theme with a wide range of features
and ready-to-go sub-themes. It is a solid choice but is often criticized (mildly)
for being heavy on the code and the stylesheets. Visit the Zen project to learn
more and download the theme at: http://drupal.org/project/zen.

For purposes of the example in this chapter, we are going to use Fusion as our
base theme. Fusion, though a relatively new theme, has been well-received in the
community and is used to create the Acquia Prosper theme, among others. Fusion is
a fairly advanced base theme with a significant number of options. Though we won't
use many of the options in the course of this example, you should explore them on
your own. The Fusion documentation is also quite good and very user-friendly.

Among the options that remain unexplored in this chapter is Fusion's use
of the Skinr module, which simplifies block styling.

To begin with, install the Fusion theme on your site. The project page is http://
drupal.org/project/fusion. Make sure you grab the most recent version suitable
for Drupal 7.

Installing new themes on your site is covered in Chapter 2, Working
with Default Configuration and Display Options.

Once it is installed, access the /sites/all/themes directory on your server. You
should see something similar to the following screenshot:

Chapter 6

[129]

As you can see in the preceding image, the Fusion directory includes three
sub-directories:

•	 fusion_core
•	 fusion_starter
•	 fusion_starter_lite

Fusion Core is the base theme. Fusion Starter and Fusion Starter Lite are ready-to-use
sub-themes. The difference between the two sub-themes lies in the features that are
implemented. Fusion Starter is loaded with options we don't need for our example,
including a starter CSS specifically for use with the Ubercart e-commerce plugin,
ready-to-use Skinr styles, and wrappers on all rows for background styling. While
Fusion Starter has attractive features, Fusion Starter Lite is cleaner and lighter in
terms of the code base and a good choice where you want a bit more control over
your new sub-theme.

Creating the sub-theme
For the example in this chapter, we are going to use Fusion Starter Lite. Now that we
have selected our base theme, it's time to get started.

•	 First, access your Drupal installation on the server, then make a copy of the
/fusion_starter_lite theme directory.

•	 Next, paste that directory into the /sites/all/themes directory and rename
it. Let's call our new theme: Cold Fusion. So you should now have a new
directory at: /sites/all/themes/coldfusion.

Creating a New Theme

[130]

•	 Next, let's update the theme name inside all the files we've kept. We need
to change every occurrence of fusion to coldfusion. If you've got a code
editor, you can run a find/replace to get this done, if not, you'll need to crack
open each file and do this.

•	 Next, let's create a new .css file. This is a requirement for a valid sub-theme;
you need at least one stylesheet. Create an empty file, name it coldfusion.
css and put it in the new theme directory.

•	 The final step in the process is to update your .info file. First, rename it
coldfusion.info (if you have not already done so when you changed all
the occurrences of fusion to coldfusion.) Next, open up the file and perform
the following operations on the contents:

°° Make sure the name has been updated
°° Update the description line as you see fit – this information will

appear inside the Theme Manager as a description for the theme
°° Declare our new stylesheet by changing this line: stylesheets[all]

[] = css/fusion-starter-lite-style.cssto stylesheets[all]
[] = css/coldfusion.css

°° Save the file

At the end of this process, your /sites/all/themes directory should look like the
following screenshot:

Chapter 6

[131]

If all has gone according to plan, the new Cold Fusion theme can now be seen inside
the Disabled Themes section of your site's Theme Manager.

At this point, go ahead and make the theme visible on the site so that you can see
the impact of my work. To do this, select the option Enable and set default from the
links you see immediately below the description for Cold Fusion 7 in the preceding
screenshot.

The system will immediately make your new theme active on the site. You are now
ready to begin customizing the theme to suit your needs.

Let's take a look at what Fusion gives us as a starting point. In the following
screenshot, you can see the frontend of your site with Cold Fusion enabled.

Note that we have already populated the site using the Devel Generate
functionality. This makes it easier to see the styles at work and gives some
context for your theming efforts.

Creating a New Theme

[132]

Chapter 6

[133]

As you can see, Fusion offers you a pretty clean slate in terms of your theming
efforts.

Configuring the site
Before you dive into customizing the themable elements of Cold Fusion, take a
moment and do the following:

1.	 Configure your theme. Visit the Theme Configuration Manager for
Cold Fusion and select the options you wish to use on the site. Theme
Configuration is covered in detail in Chapter 2, Working with the Default
Configuration and Design Option.

2.	 Go to the Modules Manager and enable all the core modules you plan
to use on your site.

3.	 Install and enable all necessary contributed modules, including Devel and
Theme Developer. Remember to adjust Permissions as needed.

4.	 Enable and assign the blocks you need to the proper regions.
5.	 If you have not done so already, set up some dummy content. You can do

this manually or by using Devel Generate.

Once you have taken these steps, you are ready to begin your customization in
earnest.

Styling the new theme
Styling the new theme will require various techniques, depending on your needs.
As this book is neither a dissertation on site architecture nor a CSS tutorial, we are
going to focus on review of the different options available to you and how, in brief,
to implement them. It's up to you to decide what you need to achieve your theming
goals. The principles discussed here in the context of Fusion are applicable with
other themes, except where noted.

To view the full Fusion theme documentation, visit
http://fusiondrupalthemes.com/support/documentation.

Creating a New Theme

[134]

Fusion's theming resources
The Fusion theme aids your theming efforts by providing a set of basic templates.
Inside the /sites/all/themes/coldfusion directory, you can see the following
templates:

•	 node.tpl.php

•	 page.tpl.php

•	 region.tpl.php

Additionally, if you look in the base theme's directory (/sites/all/themes/
fusion_core) you will find the following templates:

•	 block.tpl.php

•	 comment-wrapper.tpl.php

•	 comment.tpl.php

•	 html.tpl.php

•	 maintenance-page.tpl.php

•	 panels-pane.tpl.php
•	 search-result.tpl.php

•	 views-view—page.tpl.php

Your sub-theme will inherit these templates from the base theme.

With only two exceptions, the templates contained in the base theme are standard
overrides of core Drupal templates. The two exceptions are panels-pane.tpl.php
and views-view--page.tpl.php. These two non-core templates are provided for
your use with the Panels and Views modules, respectively.

For a description of the function of all the core templates, please see
Appendix, Identifying Templates, StyleSheets, and Themable Functions.

The default stylesheet provided with the starter sub-theme lists key selectors both
from the core and from the theme's templates, but leaves many of them undefined so
that you can customize them as you need. If you open the /css directory in the base
theme's directory, you will find an additional set of twenty stylesheets that provide the
styling for the theme. A number of these stylesheets are intended for specific purposes,
for example, the multiple stylesheets dedicated to the Superfish drop-down menu.
Your sub-theme inherits all the stylesheets in the base theme.

Chapter 6

[135]

The final theming resource provided by Fusion is the template.php file, which is
located in the base theme directory. The file contains numerous preprocess functions
and a couple of theme functions. These elements are also inherited by your sub-theme.

Customizing the styling
As you can see in the previous screenshot, the theme has only very basic styling
in place. The approach to customizing that styling is really no different from what
was discussed in the previous chapter, in which we explored using sub-themes as
a means of customizing an existing theme. However, since we are starting with a
minimalist presentation, the odds are that the changes you need to implement to
create your new theme are going to be more extensive than what was needed to
customize an existing theme.

Working with the CSS
You will probably want to start by digging into the selectors contained in
coldfusion.css and beginning to impose your own styling on the layout. Your
options for customizing the CSS can be grouped into the following; what's right for
you will depend on what you want to achieve with the theme:

•	 Override a single selector: To override or add to an existing selector, simply
place another version of the selector in the coldfusion.css file. Don't
forget that properties in the original selector will be inherited if there are no
conflicting properties in the coldfusion.css file.

•	 Adding new selectors: To create a new selector, simply put it into the
coldfusion.css file.

•	 Override an entire stylesheet: To override an entire stylesheet, place a
stylesheet of the same name in the Cold Fusion /css directory and then add
it into the Cold Fusion .info file. This approach can be used regardless of
whether you are trying to override the base theme's CSS or one of the core
CSS files located elsewhere in the system. In either event, as long as the
stylesheet names are the same, Drupal will give precedence to the stylesheet
defined in the active theme's directory.

The concepts and principles that lie behind using intercepts and overrides
are introduced in Chapter 4, Using Intercepts and Overrides.

Creating a New Theme

[136]

Precedence and inheritance
Where one style definition is in an imported stylesheet and another in the
immediate stylesheet, the rule in the immediate stylesheet (the one that is
importing the other stylesheet) takes precedence.
Where repetitive definitions are in the same stylesheet, the one furthest
from the top of the stylesheet takes precedence in the case of conflicts;
where repetitive definitions are in the same stylesheet, non-conflicting
attributes will be inherited.

Modifying the templates
All of the templates contained in the Fusion Core base theme can be inherited by
your new Cold Fusion theme. The only templates not being inherited in the default
configuration are those that are contained within the Cold Fusion directory; the
templates in the sub-theme override their counterparts of the same name located in
the base theme.

If you want to modify any of the templates contained in the sub-theme, you can do
so by simply changing those files. If you wish to modify any of the templates in the
base theme, or in the core, you can also do so, or you can create new overrides using
template suggestions.

•	 Overriding a template in the base theme: To modify any of these templates,
simply make a copy of the template and paste it into the /coldfusion
directory – that's all it takes.

•	 Override a core template: To override a system template, you use exactly the
same approach, that is, make a copy of the original template and paste it into
the /coldfusion directory.

•	 Create a template suggestion: As discussed in Chapter 4, Using Intercepts
and Overrides, template suggestions require the use of a specific naming
convention. To create a new suggestion, copy the base template, name it
appropriately, and make your changes on the new template. Note that
both the base template and the template suggestion must both be in the
/coldfusion directory.

Working with the template.php file
If you wish to modify any of the functions contained in the base theme, you will
need to create a new template.php file inside the /coldfusion directory. The
various options are explained next.

Chapter 6

[137]

•	 Function overrides and preprocess functions located in the base theme are
inherited by your sub-themes. If you don't need to add function overrides
or preprocess functions to your sub-theme, there is no need to have a
template.php file inside your sub-theme directory. Overriding a base
theme function override: If you wish to modify one of the function overrides
already created inside the base theme, you will need to copy the code from
the base theme's template.php file, paste it into the sub-theme's template.
php, and modify the function's name to be consistent with the sub-theme.

Remember to clear the Drupal cache each time you change a themable
function or template.

•	 Overriding a core themable function: Simply copy the original function, place
it in the sub-theme's template.php file, and modify the function name to
reflect the sub-theme's name.

•	 Converting a themable function into a dedicated template: Create a new
template file inside your sub-theme. Name the file in line with the name of
the function, converting any underscores to hyphens. Next, copy the output
portion of the original function and paste it into the template file.

Preprocess functions can also be added into your sub-theme, via the
template.php file. Working with preprocess functions is covered in
Chapter 4, Using Intercepts and Overrides. As we saw with the themable
functions, the name of the preprocess function must be modified to reflect
the name of the sub-theme.

Building a new theme without
sub-theming
While the use of sub-themes may be the fastest and easiest way to create a new
theme, it's not the right choice for everyone. If, for example, you wish to create a
theme that will be distributed individually, or a theme that will be hosted on Drupal.
org, you will want to create a standalone package. In those cases where you need a
distinct and complete theme, sub-theming is out of the question; you will need to
go through the extra steps of creating all the necessary pieces yourself rather than
relying on the resources of a pre-existing base theme.

Creating a New Theme

[138]

While there is no doubt that creating a new theme from scratch is more work, there
is also one clear advantage: You are not burdened by code created by someone else,
allowing you to do things exactly as you desire and enabling you to tailor the theme
narrowly to your needs.

Planning the build
As with anything else, the first step is planning your work. For purposes of this
example, we will be stepping you through building a basic theme. In the name of
simplicity, let's start with the default regions. As discussed in previous chapters,
regions are the primary containers for the placement of content and the functionality.

PHPTemplate provides a set of default regions that are ready for us to use:

• Header
• Highlighted
• Help
• Content
• Sidebar first
• Sidebar second
• Footer

You are not, however, restricted to the default regions. You can use all or only some
of the regions and you can also define new regions, if you so desire. Custom regions
for a theme are specified in the theme's .info file and then placed on the page via
the page.tpl.php file; both of these steps are required. If no regions are specified in
the .info file, then the system assumes that only the default regions are active and
available, and will ignore any additional regions placed in the page.tpl.php file.

The default regions lay an easy-to-use foundation for a traditional three-column
layout, with a content area bordered by two sidebar columns. Above the three
columns is a header region, below them is a footer region.

Creating the necessary elements
Let's get started by creating a directory to hold our new theme files. Create a new
directory inside /sites/all/themes and name it bluewater—this will be the home
directory and the name of your new theme.

Chapter 6

[139]

To make your new theme active and usable, you will need to create the
following files:

•	 A .info file
•	 A page.tpl.php file
•	 A style.css file

Create a new empty file named bluewater.info and place it in the directory. Create
another empty file named style.css and place it in the same directory. Finally,
access the /modules/system directory and make a copy of the default page.tpl.php
file and then paste it into our new directory.

Your directories should now look like the following screenshot:

Populating the .info file
A .info file is required to create a valid theme. The file contains a number of
pieces of information intended to inform the system about the theme and to set
configuration options. The syntax throughout this file is consistent : key = value.
Semicolons can be used to add comments or to comment out options.

To learn more about all the options available for the .info file, visit
http://drupal.org/node/171205.

To get started, open up the bluewater.info file and add the lines of code from the
left-hand column of the table.

.info Basic

Key pair Description
name = Bluewater This is a required field. The name stated here

should be a human-readable value.

Creating a New Theme

[140]

Key pair Description
description = A simple 3 column
theme for Drupal 7.

This data will appear in Drupal's theme
manager alongside the theme name and
screenshot. This key is optional but as it is
very helpful, it's worth using.

core = 7.x The core key is required to keep the
system from disabling our theme due to
incompatibility.

engine = phptemplate The engine key. This is a required field in a
PHPTemplate theme.

stylesheets[all][] = style.css Declares the new theme's stylesheet. Add
other stylesheets in a similar fashion.

region[head] = Head

region[sidebar_first] = First
Sidebar

region[sidebar_second] = Second
Sidebar

region[content] = Content

region[footer] = Footer

The regions key sets the regions available for
block assignment. Note that the second part
of the key pair sets the name that is displayed
for the region inside the Blocks Manager. You
can add new custom regions here by using the
same syntax.

screenshot = screenshot.png Identifies the screenshot of the theme.
The image will be displayed in the Theme
Manager. Though this is an optional field
you will want to use this, if you intend to
distribute your theme to others.

The lines in the preceding table are really the basics you need to create a practical
.info file. You have several options you can apply. For example:

The statement of the default regions is not necessary. The regions stated above are
the default regions. In the absence of a definition of regions in the .info file, the
system assumes that your theme uses the default regions. However, by declaring
the regions, we are able to control the names displayed in the Blocks Manager.

If you don't declare regions, you will get the following by default: header, help,
highlight, content, sidebar first, sidebar second, and footer.

Chapter 6

[141]

The .info file can be also used to enable the various theme configuration features,
like the site name, logo, and so on. To specify features use the syntax features[] =
name of feature. In the absence of a contrary definition, the system will assume
the presence of all the following:

•	 features[] = logo

•	 features[] = name

•	 features[] = slogan

•	 features[] = node_user_picture

•	 features[] = comment_user_picture

•	 features[] = search

•	 features[] = favicon

•	 features[] = primary_links

•	 features[] = secondary_links

Description of Optional Features

Feature Name Description
logo Control the logo via the Theme Manager.
name Display the site name.
slogan Display the site slogan.
node_user_picture Display the picture of the node author, if available.
comment_user_picture Display the picture of the comment author, if available.
search Enable site search.
favicon Control the Favicon via the Theme Manager.
primary_links Allows the administrator to designate the primary links menu.
secondary_links Allows the administrator to designate the secondary links

menu.

Should you not want any of these features, simply specify the ones you wish to see
in the .info file and comment out the ones you do not wish to see. As we want to
enable all the default features we need add nothing to our .info file; in this fashion
the system will enable all the default features, above, giving our site administrator
the widest number of configurations for Bluewater.

Note the stylesheets key used in the preceding table. In our theme, we will use only
the default style.css file; in that situation no notation is required in the .info
file. You can, however use this key to add additional stylesheets or override default
stylesheets. Note the syntax, which includes the declaration of media type for the
stylesheet, stylesheets[media_type][] = file.name.

Creating a New Theme

[142]

To learn more about using the .info file, to add or override stylesheets,
visit http://drupal.org/node/171209.

The media type key variable allows you to create stylesheets that target specific uses
or devices. The [all] option covers the widest variety of choices and should be used
for your primary stylesheet.

Guide to Media Types

Media type Description
[all] For all media.
[projection] For projector use.
[print] For print media.
[handheld] For handheld devices.
[screen] For computer screens.

Additional media type, primarily intended for accessibility devices, are
discussed at http://www.w3.org/TR/CSS21/media.html.

If you wish to add any scripts to your theme, you will need to declare them in your
.info file, just as you have done with your stylesheets. The syntax used for declaring
your scripts is: scripts[] = filename.extension. Place the actual script file in the
theme directory.

The .info file also supports a version key. If you plan to add your theme to Drupal.
org, do not use this key as it will be automatically created by the theme packaging
script. If, however, your theme is not going to be hosted on Drupal.org, you can use
this key to help you identify revision versions of your theme.

Once you have made your changes to the bluewater.info file, you are ready to
enable the theme and see what you have to work with. Log in to your site as an
administrator, then visit the Theme Manager. You should see the Bluewater theme
listed in the disabled themes section. Click on the enable and set default link
and your new theme will be immediately visible on the frontend of your site. The
following screenshot shows you what you should see:

Chapter 6

[143]

Creating a New Theme

[144]

Customizing the page.tpl.php file
The page.tpl.php file is the key to creating a PHPTemplate theme. This crucial file
handles the placement of all the major page elements and their output. Accordingly,
this file is a mix of HTML and PHP. The HTML supplies the formatting and the PHP
supplies the logic and the functionality.

As page.tpl.php is a core template file, you are essentially overriding the default
file with your theme's page.tpl.php file. For simplicity's sake, let's start with
the default template, which we can then customize to suit our needs. The default
template has in place all the regions and features we need, so it is a quick way to get
the basic page elements in place.

As we have seen in previous chapters, the default templates don't restrict us in any
fashion as any changes we make in the page.tpl.php file located in our theme will
take precedence over the default template.

At this point, it is probably a good idea to open up Bluewater's page.tpl.php file
and take a look at the contents.

Controlling element visibility with conditional statements
Take note of the ordering of the tags and the relationship between the
PHP and the HTML. Templates typically place the HTML formatting
inside the PHP conditional statements, rather than wrapping the PHP
with HTML.
For example, you will typically want to order the tags like this (HTML
inside the PHP):

<!-- slogan -->
<?php if ($site_slogan): ?>
<div class="slogan">
<?php print $site_slogan; ?>
</div>
<?php endif; ?>
You generally don't want to do it like this (PHP inside
the HTML):
<!-- slogan -->
<div class="slogan">
<?php if ($site_slogan): ?>
<?php print $site_slogan; ?>
<?php endif; ?>
</div>

Chapter 6

[145]

The reasoning behind the preference for the first ordering of tags is quite simple:
if we place the HTML outside the PHP, then the appearance of the HTML will
occur even when the condition contained in the PHP statement is not true,
thereby clogging our page with unnecessary code and more importantly, creating
unnecessary complexities in dealing with the styling of the page as a whole.

As a result of the interaction between the PHP conditional statements and the HTML
tags, you will need to make decisions about whether you wish the styles to remain
active in the absence of the element that the styling is intended to affect. In some
cases, your layout integrity is maintained better by leaving the styling in place,
regardless of whether the underlying element is active. In other cases, you will want
the formatting to fold away when the element is not active—for example, a sidebar
that collapses when no blocks are assigned to a region—and will therefore, want to
use the PHP to control the visibility of the HTML.

For a discussion of theme coding conventions, see the Drupal Theme
Handbook at http://drupal.org/node/1965.

You will note that the file contains only basic styling to wrap the various page
elements. Use the code in the file as your starting point and customize the layout to
suit your needs. If you need to create additional regions, simply follow the syntax
used to place any of the default regions, then add the region into your bluewater.
info file.

The style.css file
Let's go back now and open up the style.css file we created at the beginning of
this chapter. We will use this file to define the various selectors in the page.tpl.php
file. In addition to the selectors used to control the placement of the functionality,
you will need to define various tags, classes, and IDs to specify fonts and style
the information hierarchy. You may also wish to add decorative touches via some
creative CSS. All the theme-specific styles should be defined in this document, along
with any overrides of existing selectors.

Because an exhaustive CSS tutorial is beyond the scope of this text, we're not going
to go through all the various styling.

The next chapter, entitled Dynamic Theming, covers creating conditional
CSS styling for your theme.

Creating a New Theme

[146]

Best practice for themes would have us include a separate stylesheet
to handle those sites that use right-to-left oriented text. The additional
stylesheet is normally named styles-rtl.css. Examples of this file can
be found in the default Drupal themes.

Adding optional elements
In the preceding sections, we went through the steps for creating a basic theme from
scratch. You should have at this point a solid base upon which you can build. That
said, the elements used in the example are the bare minimum. If you want to do
more, you will no doubt find yourself exploring other options to expand the scope of
the functionality of your theme.

Among the most common techniques for enhancing a theme are:

•	 Using the template.php file to hold themable and preprocess functions, see
Chapter 4, Using Intercepts and Overrides.

•	 Creating additional template overrides, see Chapter 4, Using Intercepts &
Overrides.

•	 Creating template suggestions to provide templates dynamically, see
Chapter 7, Dynamic Theming.

•	 Adding the Color module functionality to your theme, see Chapter 5,
Customizing an Existing Theme.

All of these topics are dealt with elsewhere in this book; please refer the appropriate
sections to learn more.

Chapter 6

[147]

Building a New Pure PHP Theme
It is possible to build pure PHP templates without the use of
PHPTemplate (or any other theme engine). Given the popularity of the
PHPTemplate engine, and the extent that it eases the difficulties attendant
to theming, it is probably no surprise that few people choose to build their
themes without the use of the theme engine. Moreover, pure PHP themes
tend to be more difficult to maintain over time and there are fewer help
resources available in the Drupal community (as most people employ one
of the theme engines). Given theadvantages of PHPTemplate, and the
drawbacks of building without it, it is very hard to recommend that you
build a pure PHP theme; indeed, without some special circumstance, this
is not recommended.
Building a theme in pure PHP requires a slightly different approach to
theming. A number of the functions that would normally be automatically
handled by the PHPTemplate engine must be coded manually into your
PHP theme. The learning process associated with building PHP themes
for Drupal can be challenging unless you have strong PHP skills.

Packaging your theme
If you wish to distribute your theme and share it with the Drupal community
(something we strongly encourage!), you will need to take additional steps.

First, the theme built above did not include a logo file. Drupal themes are typically
distributed with a logo included (often just the default Drupal logo). Second, you
need to include a thumbnail of the theme in action. Take note of Drupal's guidelines
for theme screenshots, as they are rather specific http://drupal.org/node/11637.

You will also need to apply for a Git account and you must make sure your theme
complies with Drupal's coding standards. For more details on the steps you need to
take to add your theme to Drupal.org, visit http://drupal.org/node/14208.

Creating a New Theme

[148]

Summary
This chapter covered how to create a new theme using the two most popular
techniques: First, creating a new theme through the use of a base theme and a
sub-theme; second, creating a new theme from scratch. The former method is
recommended as the fastest and easiest way to build a new theme, but the latter
technique allows you to work with a completely free hand and is the right answer in
cases where you wish to distribute your theme to others.

The principles outlined in this chapter allow you to get a basic theme up and running
quickly; how you customize after that depends on your needs – and to a large extent,
your CSS skills.

In the next chapter, we look at the use of logic that will allow your theme to be more
flexible, and to respond to the presence of various conditions related to the page, the
content or the user.

Dynamic Theming
The Drupal system, backed by the powerful PHPTemplate engine, gives you the
ability to create logic that will automatically display templates or specific page
elements in response to the existence of certain conditions. Not only can you make
the display of templates and elements dynamic, but you can also tap into similar
logic for your CSS styling.

Among the techniques covered in this chapter are:

•	 Working with the Administration theme
•	 Using template suggestions to control display by page, node, or block
•	 The use of $classes to create dynamic CSS styling

Designating a separate Admin theme
Let's start with one of the simplest techniques, that is, designating a separate theme
for the use of your admin interface. The Drupal 7 system comes bundled with the
Seven theme, which is purpose-built for use by the administration interface. Seven
is assigned as your site's admin theme by default. You can, however, change to any
theme you desire.

Changing the admin theme is done directly from within the admin system's Theme
Manager. To change the admin theme, follow these steps:

1.	 Log in and access your site's admin system.
2.	 Select the Appearance option from the Management menu.
3.	 After the Theme Manager loads in your browser, scroll down to the bottom

of the page. You can see at the bottom of that page a combo box labeled
Administration theme, as shown in the following screenshot.

Dynamic Theming

[150]

4.	 Select the theme you desire from the combo box.
5.	 Click Save configuration, and your selected theme should appear

immediately.

The Administration theme combo box will display all the enabled themes
on your site. If you don't see what you want listed in the combo box,
scroll back up, and make sure you have enabled the theme you desire. If
the theme you desire is not listed in the Theme Manager, you will need
to install it first! Instructions for installing new themes for your Drupal
site are provided in Chapter 2, Working with the Default Configuration and
Display Options.

Chapter 7

[151]

Additionally note the option listed below the Administration theme
combo box: Use the administration theme when editing or creating
content. Though this option is enabled by default, you may want to
de-select this option. If you de-select the option, the system will use
the frontend theme for content creation and editing. In some cases, this
is more desirable as it allows you to see the page in context, instead of
inside the admin theme. It provides, in other words, a more realistic view
of the final content item.

Using multiple page templates
Apart from basic blog sites, most websites today employ different page layouts for
different purposes. In some cases this is as simple as one layout for the home page
and another for the internal pages. Other sites take this much further and deliver
different layouts based on content, function, level of user access, or other criteria.
There are various ways you can meet this need with Drupal. Some of the approaches
are quite simple and can be executed directly from the administration interface;
others require you to work with the files that make up your Drupal theme.

Creative use of configuration and block assignments can address some needs. Most
people, however, will need to investigate using multiple templates to achieve the
variety they desire. The bad news is that there is no admin system shortcut for
controlling multiple templates in Drupal—you must manually create the various
templates and customize them to suit your needs. The good news is that creating and
implementing additional templates is not terribly difficult and is it possible to attain
a high degree of granularity with the techniques described next. Indeed should you
be so inclined, you could literally define a distinct template for each individual page
of your site!

While there are many good reasons for running multiple page templates,
you should not create additional templates solely for the purpose of
disabling regions to hide blocks. While the approach will work, it will
result in a performance hit for the site, as the system will still produce the
blocks, only to then wind up not displaying them for the pages. The better
practice is to control your block visibility through the Blocks Manager, as
discussed in Chapter 2.

Dynamic Theming

[152]

As discussed in Chapter 4, Using Intercepts and Overrides, Drupal employs an order
of precedence, implemented using a naming convention. You can unlock the
granularity of the system through proper application of the naming convention. It is
possible, for example, to associate templates with every element on the path, or with
specific users, or with a particular functionality or node type—all through the simple
process of creating a copy of the existing template and then naming it appropriately.

In Drupal terms, this is called creating template suggestions.

When the system detects multiple templates, it prefers the specific to the general. If
the system fails to find multiple templates, it will apply the relevant default template
from the Drupal core.

See Chapter 4 for a further discussion of this mechanism.

The fundamental methodology of the system is to use the most specific template file
it finds and ignore other, more general templates. This basic principle, combined
with proper naming of the templates, gives you control over the template that will be
applied in various situations.

The default suggestions provided by the Drupal system should be
sufficient for the vast majority of theme developers. However, if you
find that you need additional suggestions beyond those provided by the
system, it is possible to extend your site and add new suggestions. See
http://drupal.org/node/190815 for an example of this advanced
Drupal theming technique.

Let's take a series of four examples to show how this system feature can be employed
to provide solutions to common problems:

1. Use a unique template for your site's home page
2. Use a different template for a group of pages
3. Assign a specific template to a specific page
4. Designate a specific template for a specific user

Chapter 7

[153]

Creating a unique home page template
Let's assume that you wish to set up a unique look and feel for the home page of a
site. The ability to employ different appearance for the home page and the interior
pages is one of the most common requests web developers hear.

There are several techniques you can employ to achieve the result; which is right
for you depends on the extent and nature of the variation required, and to a lesser
extent, upon the flexibility of the theme you presently employ. For many people a
combination of the techniques will be used.

Another factor to consider is the abilities of the people who will be
managing and maintaining the site. There is often a conflict between
what is easiest for the developers and what will be easiest for the site
administrators. You need to keep this in mind and strive to create
manageable structures. It is, for example, much easier for a client to
manage a site that populates the home page dynamically, then to have
to create content in multiple places and remember to assign things in the
proper fashion. In this regard, using dedicated templates for the home
page is generally preferable.

One option to address this issue is the creative use of configuration and assignment.
You can achieve a degree of variety within a theme—without creating dedicated
templates—by controlling the visibility and positioning of the blocks on the home
page.

Another option you may want to consider is using a
contributed module to assist with this task. The Panels and
Views modules in particular are quite useful for assembling
complex home page layouts. See Chapter 10, Useful
Extensions for Themers, for more information on these
extensions.

If configuration and assignment alone do not give you enough flexibility, you
will want to consider using a dedicated template that is purpose-built for your
home page content.

To create a dedicated template for your home page, follow these steps:

1.	 Access the Drupal installation on your server.
2.	 Copy your theme's existing page.tpl.php file (if your theme does not have

a page.tpl.php file, then copy the default page.tpl.php file from the folder
/modules/system).

Dynamic Theming

[154]

3.	 Paste it back in the same directory as the original file and rename it page--
front.tpl.php.

4.	 Make any changes you desire to the new page--front.tpl.php.
5.	 Save the file.
6.	 Clear the Drupal theme cache.

That's it—it's really that easy. The system will now automatically display your new
template file for the site's home page, and use the default page.tpl.php for the rest
of the site.

Note that page--front.tpl.php will be applied to whatever page
you specify as the site's front page using the site configuration settings.
To override the default home page setting visit the Site Information page
from the Configuration Manager. To change the default home page, enter
the path of the page you desire to use as the home page into the field
labeled Default home page.

Next, let's use the same technique to associate a template with a group of pages.

The file naming syntax has changed slightly in Drupal 7. In the past,
multiple words contained in a file name were consistently separated with
a single hyphen. In Drupal 7, a single hyphen is only used for compound
words; a double hyphen is used for targeting a template. For example,
page--front.tpl.php uses the double hyphen as it indicates that
we are targeting the page template when displayed for the front page.
In contrast, maintenance-page.tpl.php shows the single hyphen
syntax, as it is a compound name.

Remember, suggestions only work when placed in the same directory
as the base template. In other words, to get page--front.tpl.php
to work, you must place it in the same directory as page.tpl.php.

Chapter 7

[155]

Using a different template for a group of
pages
You can provide a template to be used by any distinct group of pages. The approach
is the same as we saw in the previous section, but the name for the template file
derives from the path for the pages in the group. For example, to theme the pages
that relate to users, you would create the template page--user.tpl.php.

A note on templates and URLs
Drupal bases the template order of precedence on the default path
generated by the system. If the site is using a module like Pathauto, that
alters the path that appears to site visitors, remember that your templates
will still be displayed based on the original paths. The exception here
being page--front.tpl.php, which will be applied to whatever page
you specify as the site's front page using the site's Configuration Manager.

The following table presents a list of suggestions you can employ to theme various
pages associated with the default page groupings in the Drupal system:

Suggestion Affected page
page--aggregator.tpl.php Aggregator pages
page--blog.tpl.php Blog pages (but not the individual node pages)
page--book.tpl.php Book pages (but not the individual node pages)
page--contact.tpl.php Contact form (but not the form content)
page--forum.tpl.php Forum pages (but not the individual node pages)
page--poll.tpl.php Poll pages
page--user.tpl.php User pages (note this affects both the user pages

and the login pages)

The steps involved in creating a template-specific theme to a group of pages is the
same as that used for the creation of a dedicated home page template:

1.	 Access the Drupal installation on your server.
2.	 Copy your theme's existing page.tpl.php file (if your theme does not have

a page.tpl.php file, then copy the default page.tpl.php file from the folder
/modules/system).

3.	 Paste it back in the same directory as the original file and rename it as shown
in the table above, for example page--user.tpl.php.

4.	 Make any changes you desire to the new template.

Dynamic Theming

[156]

5.	 Save the file.
6.	 Clear the Drupal theme cache.

Note that the names given in the table above will set the template for all
the pages within the group. If you need a more granular solution—that
is, to create a template for a sub-group or an individual page within the
group, see the discussion in the following sections.

Assigning a specific template to a specific
page
Taking this to its extreme, you can associate a specific template with a specific page.
By way of example, assume we wish to provide a unique template for a specific
content item. Let's assume the page you wish to style is located at http://www.
demosite.com/node/2. The path of the page gives you the key to the naming of the
template you need to style it. In this case, you would create a copy of the page.tpl.
php file and rename it to page--node--2.tpl.php.

Using template suggestion wildcards
One of the most interesting changes in Drupal 7 is the introduction of
template suggestion wildcards. In the past, you would have to specify
the integer value for individual nodes, for example, page--user--1.
tpl.php. If you wished to also style the pages for the entire group of
users, you had the choice of either creating page--user.tpl.php, that
affects all user pages, including the login forms, or you would be forced
to create individual templates to cover each of the individual users. With
Drupal 7 we can now simply use a wildcard in place of the integer values,
for example, page--user--%.tpl.php. The new template page--
user--%.tpl.php will now affect all the individual user pages without
affecting the login pages.

Chapter 7

[157]

Designating a specific template for a
specific user
Assume that you want to add a personalized theme for the user with the ID of 1 (the
first user in your Drupal system, and for many sites, the ID used by the super user).
To do this, copy the existing page.tpl.php file, rename it to reflect its association
with the specific user, and make any changes to the new file. To associate the new
template file with the user, name the file: page—-user--1.tpl.

Now, when the user with ID=1 logs into the site, they will be presented with this
template. Only user 1 will see this template and only when he or she is logged in
and visiting the user page.

Dynamically theming page elements
In addition to being able to style particular pages or groups of pages, Drupal makes
it possible to provide specific styling for different page elements.

Associating elements with the front page
Drupal provides $is_front as a means of determining whether the page currently
displayed is the front page. $is_frontis set to true if Drupal is rendering the front
page; otherwise it is set to false.

We can use $is_front in our page.tpl.php file to help toggle the display of items
we want to associate with the front page. To display an element on only the front
page, make it conditional on the state of $is_front. For example, to display the site
slogan on only the front page of the site, wrap $site_slogan (in your page.tpl.php
file) as follows:

<?php if ($is_front): ?>
<?php print $site_slogan; ?>
<?php endif; ?>

To set up an alternative condition, so that one element will appear on the front page
but a different element will appear on other pages, modify the statement like this:

<?php if ($is_front): ?>
 //whatever you want to display on front page
<?php else: ?>
 //what is displayed when not on the front page
<?php endif; ?>

Dynamic Theming

[158]

$is_front is one of the default baseline variables available to all
templates. Other useful baseline variables include $is_admin, that
returns true when the visitor is a site administrator and $logged_in,
that returns true when the viewer is a member of the site, logged in and
authenticated. The entire list of baseline variables is documented inside
your page.tpl.php file.

Styling by region
The region.tpl.php file is new in the core of Drupal 7. The file provides a template
that is used for the regions on your site and contains within it the output of the
block.tpl.php template.

As this file is used for all regions on the site, it is unlikely you will ever want to
override this template globally. However, it is conceivable that at some point you
may want to provide a template for one or more of your specific regions. To provide
a template suggestion targeting one of the regions on your site, you must first copy
the region.tpl.php file to your theme directory, then copy it and rename it to
provide the template suggestion. The proper syntax for a suggestion targeting a
region is: region--region-name.tpl.php, for example, region--sidebar-first.
tpl.php.

Dynamically styling blocks
By default, the system's block output is controlled by the block.tpl.php
template. The template can be overridden or intercepted with a variety of template
suggestions. As we have seen in other areas, PHPTemplate will look to the names
given multiple template files to determine which template to display. The order of
precedence used for the block template is consistent with that used elsewhere.

At the most specific, you can provide a template to apply to the blocks of a specific
module of a specific delta (block--module-name--delta.tpl.php). You can also
attach a template to all the blocks generated by a module (block--module-name.
tpl.php), or to the blocks assigned to a particular region (block--region-name.
tpl.php). Failing the presence of any of these, the system applies the default block.
tpl.php template.

Chapter 7

[159]

Note that the order of precedence includes the name of the module that
produces the output being displayed in the block. Delta is a system-
generated value that provides a unique identifier for each block.

All blocks manually created by the user share the module name "block".

If you are not certain of the provenance of your block, that is, the name of the module
that produces the block or the block's delta, try using the Theme Developer feature
of the Devel module. If you have the Devel module installed on your site, you can
harvest this information in the form of a list of suggestions quite easily. To use this
feature:

1.	 Install the Devel module.
2.	 Install the Theme Developer module.
3.	 Enable both modules.
4.	 Open your browser and go to the page where your block appears.
5.	 Click the Themer Info checkbox on the bottom-left of the screen, then click

on the block in question.

Dynamic Theming

[160]

When you click on the element, a pop up will appear, such as the one in the
following illustration:

Looking at the preceding screenshot you can see the suggestions relevant to the
block in our exam:

Template Will apply to...
block--search-form.tpl.php The search form block
block--search.tpl.php All blocks output by the Search module
block--sidebar-first.php All blocks in the sidebar-first region
block.tpl.php All blocks

The Devel and Theme Developer modules are discussed in more detail in
Chapter 10.

Chapter 7

[161]

Creating dynamic CSS styling
In addition to creating templates that are displayed conditionally, the Drupal system
also enables you to apply CSS selectively. Drupal creates unique identifiers for
various elements of the system and you can use those identifiers to create specific
CSS selectors. As a result, you can provide styling that responds to the presence (or
absence) of specific conditions on any given page.

Employing $classes for conditional styling
One of the most useful dynamic styling tools is $classes. This variable is intended
specifically as an aid to dynamic CSS styling. It allows for the easy creation of CSS
selectors that are responsive to either the layout of the page or to the status of the
person viewing the page. This technique is typically used to control the styling
where there may be one, two, or three columns displayed, or to trigger display for
authenticated users.

Prior to Drupal 6, $layout was used to detect the page layout. With
Drupal 6 we got instead, $body_classes. Now, in Drupal 7, it's
$classes. While each was intended to serve a similar purpose, do not
try to implement the previous incarnations with Drupal 7, as they are no
longer supported!

By default $classes is included with the body tag in the system's html.tpl.php file;
this means it is available to all themes without the necessity of any additional steps
on your part. With the variable in place, the class associated with the body tag will
change automatically in response to the conditions on the page at that time. All you
need to do to take advantage of this and create the CSS selectors that you wish to see
applied in the various situations.

The following chart shows the dynamic classes available to you by default in
Drupal 7:

Condition Class available
no sidebars .no-sidebar

one sidebar .one-sidebar

left sidebar visible .sidebar-left

right sidebar visible .sidebar-right

two sidebars .two-sidebars

front page .front

Dynamic Theming

[162]

Condition Class available
not front page .not-front

logged in .logged-in

not logged in .not-logged-in

page visible .page-[page type]

node visible .node-type-[name of type]

If you are not certain what this looks like and how it can be used, simply view the
homepage of your site with the Bartik theme active. Use the view source option in
your browser to then examine the body tag of the page. You will see something like
this: <body class="html front not-logged-in one-sidebar sidebar-first
page-node">.

The class definition you see there is the result of $classes. By way of comparison,
log in to your site and repeat this test. The body class will now look something like
this: <body class="html front logged-in one-sidebar sidebar-first page-
node">.

In this example, we see that the class has changed to reflect that the user viewing the
page is now logged in. Additional statements may appear, depending on the status
of the person viewing the page and the additional modules installed.

While the system implements this technique in relation to the body tag, its usage is
not limited to just that scenario; you can use $classes with any template and in a
variety of situations.

If you'd like to see a variation of this technique in action (without having to create it
from scratch), take a look at the Bartik theme. Open the node.tpl.php file and you
can see the $classes variable added to the div at the top of the page; this allows
this template to also employ the conditional classes tool.

Note that the placement of $classes is not critical; it does not have to be at the top
of the file. You can call this at any point where it is needed. You could, for example,
add it to a specific ordered list by printing out $classes in conjunction with the li
tag, like this:

<li class="<?php print $classes; ?>">

$classes is, in short, a tremendously useful aid to creating dynamic theming.
It becomes even more attractive if you master adding your own variables to the
function, as discussed in the next section.

Chapter 7

[163]

Adding new variables to $classes
To make things even more interesting (and useful), you can add new variables to
$classes through use of the variable process functions. This is implemented in
similar fashion to other preprocess function, as discussed in Chapter 4.

Let's look at an example, in this case taken from Drupal.org. The purpose here is
to add a striping class keyed to the zebra variable and to make it available through
$classes. To set this up, follow these steps:

1.	 Access your theme's template.php file. If you don't have one, create it.
2.	 Add the following to the file:

<?php
function mythemename_preprocess_node(&$vars) {
 // Add a striping class.
 $vars['classes_array'][] = 'node-' . $vars['zebra'];
}
?>

3.	 Save the file.

The variable will now be available in any template in which you implement
$classes.

Creating dynamic selectors for nodes
Another handy resource you can tap into for CSS styling purposes is Drupal's node ID
system. By default, Drupal generates a unique ID for each node of the website. Node
IDs are assigned at the time of node creation and remain stable for the life of the node.
You can use the unique node identifier as a means of activating a unique selector.

To make use of this resource, simply create a selector as follows:

#node-[nid] {
}

For example, assume you wish to add a border to the node with the ID of 2. Simply
create a new selector in your theme's stylesheet, as shown:

#node-2 {
border: 1px solid #336600
}

As a result, the node with the ID of 2 will now be displayed with a 1-pixel wide solid
border. The styling will only affect that specific node.

Dynamic Theming

[164]

Creating browser-specific stylesheets
A common solution for managing some of the difficulties attendant to achieving
true cross-browser compatibility is to offer stylesheets that target specific browsers.
Internet Explorer tends to be the biggest culprit in this area, with IE6 being
particularly cringe-worthy. Ironically, Internet Explorer also provides us with one of
the best tools for addressing this issue.

Internet Explorer implements a proprietary technology known as Conditional
Comments. It is possible to easily add conditional stylesheets to your Drupal system
through the use of this technology, but it requires the addition of a contributed
module to your system, called Conditional Stylesheets.

While it is possible to set up conditional stylesheets without the use of the module,
it is more work, requiring you to add multiple lines of code to your template.php.
With the module installed, you just add the stylesheet declarations to your .info
file and then, using a simple syntax, set the conditions for their use. Note also that
the Conditional Stylesheets module is in the queue for inclusion in Drupal 8, so it is
certainly worth looking at now.

To learn more, visit the project site at http://drupal.org/project/
conditional_styles.

If, in contrast, you would like to do things manually by creating a preprocess
function to add the stylesheet and target it by browser key, please see
http://drupal.org/node/744328.

Summary
This chapter covers the basics needed to make your Drupal theme responsive to the
contents and the users. By applying the techniques discussed in this chapter, you
can control the theming of pages based on content, state of the pages, or the users
viewing them. Taking the principles one step further, you can also make the theming
of elements within a page conditional. The ability to control the templates used and
the styling of the page and its elements is what we call dynamic theming.

Chapter 7

[165]

This chapter covered not only the basic ideas behind dynamic theming, but
also the techniques needed to implement this powerful tool. Among the items
discussed at length were the use of suggestions to control template display and the
implementation of $classes.

The next chapter deals with one of the most challenging areas in Drupal theming,
that is, working with the default forms.

Dealing with Forms
In this chapter, we look at the forms generated by the Drupal core and how they
can be themed. We'll cover all the default forms available on the frontend of a
Drupal website, including the various search, login, and contact forms, as well
as the comments form.

It's worth noting at the outset that this chapter is about theming forms, not about
creating custom forms. The contents of this chapter are concerned with presentation,
not with adding or deleting form elements or creating new forms, tasks we would
normally consider as belonging to the programmer rather than the themer.

There are no additional extensions to download or install for this chapter; all
examples are based on the default Bartik theme or new code contained in this
chapter. You will, however, need, access to your favorite editor to make the
modifications discussed here, as well as a Drupal installation on which to preview
your work.

In this chapter we will:

•	 Review the default forms
•	 Discuss how forms work in Drupal
•	 Look at how to customize the default forms

Let's start by taking a look at all the forms that are available inside the default
Drupal distribution.

Dealing with Forms

[168]

The Default Forms
The default Drupal distribution includes a number of forms for the frontend user.
Some are active at installation, others need to be enabled and configured by the
administrator. On the following pages, we go through all of the default forms and
provide a quick look at each, highlighting any special concerns unique to each
particular form.

The User Forms
The user forms consist of the Login Forms, the User Registration Form, the Request
Password Form, and the User Profile Editing Form.

Login Form
The Login Form exists in two varieties—The Login Block Form and the Login Page
Form. As the names imply, the Login Block Form is a block you can position with the
Blocks Manager; the Login Page Form appears in the content region of a page. Note
that the Login Page also provides additional functionality—it includes links to new
account registration (a.k.a., the User Registration Form) and to the Request Password
Form, as shown in the following screenshot.

Chapter 8

[169]

Login Block Form
The function that builds this form is user_login_block(), which is located at
modules/user/user.module. The placement of the form on the page is controlled
from within the Blocks Manager.

Login Page Form
In addition to the block position, the Login Form can also occupy a page position.
In the page position, the Login Form is controlled by the function user_login(),
located at modules/user/user.module. By default, the Login Page Form can always
be found at: http://www.yoursite.com/?q=user.

Dealing with Forms

[170]

User Registration Form
The User Registration Form appears in the content region and can be reached from
either the link in the Login block or from the links at the top of the Login Form and
the Request Password Form. By default, the link to this form is included in the tabs
that appear at the top of the Login Page Form, as seen in the following screenshot:

This form is generated by the function user_register_form(), found at modules/
user.module. You can link directly to this form at http://www.yoursite.
com/?q=user/register.

Request Password Form
The Request Password Form appears in the content region and can be reached from
either the link in the Login Block or from the links at the top of the Login Form
and the User Registration Form. By default, the link to this form is included in the
tabs that appear at the top of the Login Page Form, as you can see in the following
screenshot:

Chapter 8

[171]

The function that controls the output of the Request Password Form is user_pass()
at modules/user/user.pages.inc. You can link directly to this form at http://
www.yoursite.com/?q=user/password.

User Profile Editing Form
Registered users of a Drupal site are able to maintain their personal information
themselves via the User Profile Editing Form. The form is accessed by clicking on
the EDIT tab on the My Account page. The form appears in the content area of
the page. In the default configuration, the form uses the overlay, as shown in the
following screenshot. However, depending upon configuration, it can also appear on
a standard page.

Dealing with Forms

[172]

Chapter 8

[173]

The function that controls the output of the User Profile Form is user_edit_
form()found at modules/user.module.

Contact Form
Drupal includes the Contact module which enables both the creation of a site-wide
contact form as well as personal contact forms for the individual users of your site.

The function that controls the output of the contact form is contact_site_
page()found at modules/contact/contact.pages.inc.

The same form is used for both the site-wide contact form and the user
contact forms.

Dealing with Forms

[174]

Search Forms
The Search Forms have several unique characteristics that set them apart from the
other forms in Drupal. The form has three variations—the search block, the search
page, and the advanced search form. The module also provides output that needs to
be considered, that is, the Search Results page.

There are three versions of the Search Form in the default Drupal distribution:

1.	 The Block Search Form is produced by the Search module and is typically
placed in a sidebar region. It is active and visible in the default installation.
But, since the placement of the form is controlled by the Blocks Manager, it is
also possible to re-position the form or to hide it completely.

2.	 The Page Search Form appears in the content region of a page. While the
search page is just a basic one-line search box, the search page also has a link
to the advanced search functionality, which provides enhanced functionality
compared to the basic Search Form.

3.	 The Advanced Search Form is more complex than the basic Search Form.
It always appears in the content area in search page format (assuming the
user has been granted access to the advanced search functionality by the
administrator), as you can see in the next screenshot:

Chapter 8

[175]

Block Search Form
The Block Search Form is controlled by the Search module and must be assigned to a
block position. Like other blocks, a title can also be specified by the administrator via
the Block Manager.

The Block Search Form is produced by the default template search-block-form.
tpl.php, located at modules/search.

A nice discussion of approaches to modifying the Block Search Form
can be found on the official Drupal site at: http://drupal.org/
node/154137.

Page Search Form
The Page Search Form provides a basic search box, but with the addition of an
advanced search link and the option to search for either content or users. Note in the
next screenshot, the Advanced search option is hidden, but with a click on the name,
a panel will unfold to expose the advanced search form fields.

The Page Search Form is produced by the function search_form(), located at
modules/search/search.module.

Advanced Search Form
Clicking on the Advanced search link on the Page Search Form brings the user to the
Advanced Search Form, which includes a number of additional options for searching
the site.

Dealing with Forms

[176]

The Advanced Search Form is produced by the function search_form() (same as
the previous form) working in conjunction with the code in the node.module file,
located at modules/node/node.module.

Search results page
The search results page is produced by the action of the various search forms. The
functions that control the output are contained in modules/search/search.pages.
inc. The function search_view() collects the results and provides the page titles
and related info.

The next screenshot shows the default search results page. Note that the search
results categorize the output into two tabs—one for content, the other for users.
The page also includes the Page Search Form and the Advanced Search Form.

Chapter 8

[177]

The default Drupal system includes two templates affecting the search results—one
for the individual results (search-result.tpl.php) and the other for the result set
as a whole (search-results.tpl.php). The templates can be found at modules/
search.

Poll module Forms
The Poll module involves several forms. The two we will deal with here are the Poll
Block Form and the Poll Page Form. Both are as follows:

The system provides several default templates to control the styling. There are
default templates for theming all the essential elements of the poll (poll-bar.tpl.
php, poll-bar-block.tpl.php), and the presentation of the poll results (poll-
results.tpl.php, poll-results-block.tpl.php) and for the actual voting form
used by the module (poll-vote.tpl.php).

Still, if you want to do more, you can dig into the function associated with the form.
The functions are found at modules/poll/poll.module.

Dealing with Forms

[178]

Poll Block Form
The Poll Block Form appears when the administrator has enabled both the Poll
module and assigned the Poll Block to an active region.

The Poll Block Form is produced by the function poll_block_view(), which is
located at modules/poll/poll.module, but note as well the default template
mentioned at the beginning of the section on polls; if you wish to theme this form,
you most likely will want to do so by overriding the default template.

Poll Page Form
The Poll Page Form appears whenever a visitor clicks on the poll or if the
administrator has provided a menu item linking to a page containing the poll
content item.

The form is produced by the function poll_form(), which is located at modules/
poll/poll.module, but note as well the default templates mentioned at the
beginning of the section on polls.

Comment Form
The Comment Form appears in two places:

1.	 At the end of nodes where the comment functionality has been enabled.
2.	 In the Forum, where the form is used to add forum entries.

The Comment Form is one of the more complex forms in the system, at least in
terms of the output on the screen. It is created by the Comment module, which also
provides you with two very useful templates.

•	 comment-wrapper.tpl.php: This template provides an HTML container for
the comments. The wrapper surrounds the form and can be used to impact
the styling of the form itself.

•	 comment.tpl.php: The default template for the individual comments. This
template handles the display of the comments themselves, not the form.

The form itself is generated by the function comment_form(), which is located in the
file modules/comment/comment.module. The Add Comment form is shown in the
following screenshot:

Chapter 8

[179]

Unlike other forms in the core, the field editing capabilities in Drupal
7 are available for the comment form. As a result, the comment fields
and the display of the fields can be modified somewhat by using the
Comment Fields and Comment Display options available on the Content
Types Editing page.

Administration Forms
The preceding section outlines all of the forms that are generally available for
site visitors. There exist, however, an even larger number of forms inside the
administration system. The admin system forms cover things like the content
creation and editing interfaces, the forms for creating users, and many, many
more functions.

In most Drupal projects, the administration forms are rarely customized. That does
not mean they cannot be customized, but rather it simply reflects the fact that few
people bother in customizing them—at least on smaller sites. If, however, you are
working on a large site that contains numerous custom fields or content types, you
may want to consider customizing some of the forms in the admin interface.

Dealing with Forms

[180]

Typically administration forms are customized for the purpose of
improving usability and to making it simpler to create and edit
content items.

The techniques used for customizing the admin forms are exactly the same as those
used for the public-facing forms.

The Node Edit Form is one of the most commonly customized admin
forms. The Panels Module provides a ready-to-use option for modifying
the Node Edit Form. If you wish to override that form to modify the
layout and add a bit of styling, the Panels option is a good alternative.
The Panels module is discussed further in Chapter 10, Useful Extensions for
Themers.

How Forms work in Drupal
The forms in Drupal are tightly integrated with the core. Forms are always displayed
either inside the page content region or in blocks, therefore working with forms
also means working with the area surrounding the form. As a result of these
various complications, theming the Drupal forms requires awareness of a variety of
techniques and can frankly be a bit of a chore.

For developers, there is a dedicated API for Drupal forms. The API makes
it possible to access the full functionality of the forms and to create your
own forms. While it is not necessary to dig into the API to theme your
forms, if you wish to do more, for example adding new fields or deleting
mandatory fields, you will need to reference the API. Start with the Form
API Quickstart Guide at http://drupal.org/node/751826.

Unlike other areas of the system, most forms do not include a selection of default
templates. Instead, if you wish to theme a form you are typically left with the choice
of overriding themable functions that relate to specific elements or converting the
form functions into more easily accessible templates.

There are exceptions; the Poll module, for example, includes a dedicated
template for the voting form.

Chapter 8

[181]

At this point it is worth highlighting the global function drupal_
render(). The function is used throughout Drupal to output arrays, and
since the forms in Drupal rely heavily on arrays, you will encounter this
function as part of your work with the forms.
drupal_render supersedes the old function form_render, which was
used in earlier Drupal systems. In Drupal 7, there is now also a related
function, drupal_render_children(), which should be called last
to render any leftover or hidden elements in your form. Visit the Drupal
API to learn more about these important functions. See, http://api.
drupal.org/api/drupal/includes--common.inc/function/
drupal_render and http://api.drupal.org/api/drupal/
includes--common.inc/function/drupal_render_children/7.

To achieve a greater degree of control over form styling, it helps to go behind the
scenes a bit and look at what happens when the system builds a form. For the sake of
discussion, let's take a look at an example of an unaltered Drupal form function and
examine it in more detail.

Here's the function that produces the form used in the Login Block. The original code
can be found in modules/user/user.module:

functionuser_login_block($form) {
 $form['#action'] = url($_GET['q'], array('query' =>drupal_get_
destination()));
 $form['#id'] = 'user-login-form';
 $form['#validate'] = user_login_default_validators();
 $form['#submit'][] = 'user_login_submit';
 $form['name'] = array('#type' => 'textfield',
 '#title' => t('Username'),
 '#maxlength' => USERNAME_MAX_LENGTH,
 '#size' => 15,
 '#required' => TRUE,
);
 $form['pass'] = array('#type' => 'password',
 '#title' => t('Password'),
 '#maxlength' => 60,
 '#size' => 15,
 '#required' => TRUE,
);
 $form['actions'] = array('#type' => 'actions');
 $form['actions']['submit'] = array('#type' => 'submit',
 '#value' => t('Log in'),
);
 $items = array();

Dealing with Forms

[182]

if (variable_get('user_register', USER_REGISTER_VISITORS_
ADMINISTRATIVE_APPROVAL)) {
 $items[] = l(t('Create new account'), 'user/register',
array('attributes' => array('title' => t('Create a new user
account.'))));
 }
 $items[] = l(t('Request new password'), 'user/password',
array('attributes' => array('title' => t('Request new password via
e-mail.'))));
 $form['links'] = array('#markup' => theme('item_list', array('items'
=> $items)));
return $form;
}

Note how this function sets the attributes for the various fields, including field
lengths and data labels. For example, the following excerpt (taken from the
preceding code,) produces the password field and its related attributes:

•	 Title of the field (Password)
•	 The maximum length of the input (60 characters)
•	 The width of the input box displayed (15 characters)
•	 Whether it is a required field (TRUE)

 $form['pass'] = array('#type' => 'password',
 '#title' => t('Password'),
 '#maxlength' => 60,
 '#size' => 15,
 '#required' => TRUE,
);

The system uses an array to hold the values for these attributes.

Here is a simpler example, which produces the submit button, including the text for
the button (Log in):

 $form['actions'] = array('#type' => 'actions');
 $form['actions']['submit'] = array('#type' => 'submit',
 '#value' => t('Log in'),
);

The appearance of all of these items can be modified by intercepting and overriding
this function, as discussed below.

Chapter 8

[183]

The trick to modifying a form by overriding the function is to first locate the correct
form ID of the original form. Thereafter you simply need to identify the elements
(for example, the password field or the submit button, and so on) that you wish to
modify and make your changes.

Finding the Form ID
Note that the name of our function, as shown previously, was derived
from the form ID. The form ID for the previous example is user_
login_block, which tells you that you need to find the function
named function user_login_block(). Finding the form ID is
relatively simple, as all forms in Drupal have a unique ID. To locate this
information, you have a couple of options: First, you can directly view the
HTML source code of the page upon which your form appears. Look for
a hidden field in the form code. In the case of the User Login Block form,
the information you want looks like this:
<input type="hidden" name="form_id" value="user_login_
block" />

The ID of the form is, therefore, user_login_block.
An alternative technique is to use the Form Inspect module, which not
only helps you find form IDs, but also makes it easy to dump form arrays.
Unfortunately, at the time this was written the module was not yet ready
for Drupal 7. Check in on the module's progress at http://drupal.
org/project/forminspect.

Modifying forms
There are six different techniques used to modify the appearance of Drupal forms.
Depending on the circumstances, you can:

1. Work with the existing CSS styling.
2. Modify the page or block holding the form.
3. Override a default template associated with the form.
4. Override a theme function related to the form.
5. Convert the function that generates the form into a template.
6. Modify the form with a custom module.

Of those six techniques, the first two are the most limited, as they do not involve
changing the form output by itself. The third technique, overriding the default
template associated with the form, is useful, but limited by the fact that not all the
forms are the subject of existing templates.

Dealing with Forms

[184]

Of the six, the last three techniques are the most powerful as they deal with the
form itself. Unfortunately, the last three techniques are also the most complex to
implement. Each of the approaches is discussed in the following sections that follow.

Working with the CSS styling
This is the most limited option available to you, but if you are simply concerned with
the styling of the form, this option may be all that you need. As noted in Chapter 4,
Using Intercepts and Overrides and again later in this chapter, there are default styles
in place for all the system forms and their elements. You can achieve a degree of
customization by intercepting and overriding the relevant selectors with your own
definitions. The technique is no different than that discussed elsewhere; simply
add the selectors to your theme's style.css file, thereby overriding the original
definitions.

The primary selectors affecting each form are defined in their respective stylesheets.

Form Primary stylesheet
Form fields modules/system/system.theme.css

Form text modules/system/system.theme.css

Error messages modules/system/system.theme.css

Overlay modules/overlay/overlay-parent.css

modules/overlay/overlay-child.css

Polls form layout modules/poll/poll.css

Overriding the CSS styling for forms is no different than overriding the CSS for other
areas of your Drupal site. Simply identify the elements that need to be modified and
place your new definitions in your theme's style.css file.

Modifying the page or block holding the form
With the help of PHPTemplate, we can create custom templates for either the pages,
or the blocks in which the forms are displayed.

Chapter 8

[185]

Overriding the templates for pages and nodes
containing forms
Many of the forms in the default Drupal system appear inside the content area
of pages. For those forms, it is sometimes desirable to provide dedicated page
templates. In most cases this is a straightforward matter; we treat it like any other
page template override.

Overriding templates is discussed in depth in Chapter 4.

By way of example, let's set up a dedicated page template for the site-wide
contact form.

1.	 Create the page template where your form will appear. It's easiest just to
copy the existing page.tpl.php.

2.	 Rename it page--contact.tpl.php, and save it to the root directory of
your theme.

3.	 Make your changes to the new template file.
4.	 Save it and flush the cache.

The system will automatically give precedence to the more specific page--contact.
tpl.php and display it instead of the default page.tpl.php.

Note the primary limitation of this technique—you are not actually styling the form,
but simply the setting in which the form appears (the page). While you can achieve
a degree of more targeted styling by theming the node template (in this case node--
contact.tpl.php), you are still not changing the form itself. If you need to modify
the form elements, read on.

Overriding the templates for blocks containing forms
Just as you can create a custom template for a page, you can also create a custom
template for a block. Where a form appears inside the block, we are able to achieve
a degree of control over the theming of the form by way of the block template.

As we discussed in Chapter 4, overriding a block template is a relatively simple
matter. We need to create the template, name it properly, and then let Drupal do
the rest.

The Polls module, the Search Block Form, and the Login Block Form are all forms
that are displayed as blocks. It is conceivable that you may want to provide a
dedicated block template for any of them.

Dealing with Forms

[186]

By way of example, let's assume you want to provide a customized template for the
block containing the Search Block Form.

1.	 If you don't have one already, copy the default block.tpl.php file and paste
it into your theme directory.

2.	 Rename the file block--search.tpl.php.
3.	 Insert into the new file a custom style (highlighted in the following code).
4.	 Save your file.

?>
<div id="<?php print $block_html_id; ?>" class="<?php print
$classes; ?>"<?php print $attributes; ?>>

<?php print render($title_prefix); ?>
<?php if ($block->subject): ?>
<h2<?php print $title_attributes; ?>><?php print $block->subject
?></h2>
<?php endif;?>
<?php print render($title_suffix); ?>

<div class="content"<?php print $content_attributes; ?>>
'<?php print $content ?>
'</div>
</div>

The presentation of the block containing the Search Block Form is now controlled by
your new template.

Remember—for your new template to work properly, you must include
the base template in the same directory. For example, if you want to
style block--search.tpl.php, you must include the base template
(block.tpl.php) in the same directory. You have to have the base
template in your folder even if you are not making any changes to it.

This technique suffers from the same limitation noted in the previous section, that is,
you are not theming the form itself, but the setting in which the form appears. While
PHPTemplate allows us to set up page, node, and block templates with very little
coding, we can go a step further and with a bit of additional work, gain control over
the elements of the forms themselves (independently of the page or block containing
the form), as we see later in this chapter.

Chapter 8

[187]

Overriding the default form templates
There exist in the system several templates applicable to forms. These templates can
be intercepted and overridden with your own versions, just like in other areas of
Drupal theming.

As an example, let's modify the Search Block Form again, but this time we'll affect
the form directly, rather than just the block containing the form (as we did in the
immediately preceding section). To do this, we will need to create a custom template
file dedicated to our Search Block Form.

To begin, let's copy the default template file associated with the Search Block Form.
That template is named search-block-form.tpl.php, and it can be found in the
modules/search/ directory. Copy the file to your theme directory.

Open up the file and you see the following:

?>
<div class="container-inline">
<?php if (empty($variables['form']['#block']->subject)) : ?>
<h2 class="element-invisible"><?php print t('Search form'); ?></h2>
<?php endif; ?>
<?php print $search_form; ?>
</div>

The php print statements produce the output that displays on the screen, together
with the hidden fields that are necessary for this form to work properly.

What you don't see in the code are the individual elements of the form, as they
are contained within $search_form. If you want to get to those, to style them
individually we need to do more.

Note the comment information near the top of the file:

* Available variables:
 * - $search_form: The complete search form ready for print.
 * - $search: Associative array of search elements. Can be used to
print each
 * form element separately.
 *
 * Default elements within $search:
 * - $search['search_block_form']: Text input area wrapped in a div.
 * - $search['actions']: Rendered form buttons.
 * - $search['hidden']: Hidden form elements. Used to validate forms
when
 * submitted.

Dealing with Forms

[188]

The information tells us two things—the default variables and the elements available
inside $search.

In the template file you just created, replace the line <?php print $search_form; ?>
with the following code:

<?php print $search['search_block_form']; ?>
<?php print $search['actions']; ?>
 <?php print $search['hidden']; ?>

Save the file and clear your theme registry. Refresh the page in your browser
and you will see no difference in the form; the statements we substituted into the
template file provide all the elements of the $search_form, but expose the various
elements for you. Using this technique, you can now inject additional styling for
those elements individually, or to even print additional text that will be displayed
with the form.

Overriding theme functions to control form
elements
The most flexible way to achieve control over the look and feel of a form is through
the manipulation of one of the theme functions that relate to forms. There are a
number of theme functions covering the elements used in Drupal themes. Overriding
one of the themable functions for the forms is no different from overriding any of the
other themable functions in the system.

See the Forms portion of Appendix A for a list of the themable functions
available.

The technique used to create the override is the same as that discussed in Chapter 4.
Here's a quick overview of the steps it takes to create the function override:

1.	 If it does not exist, create a new file named template.php inside your
theme directory.

2.	 Find the function you wish to customize.
3.	 Copy the original function and paste it into the template.php file.
4.	 Rename the function, using the syntax themename_function_name(),

where you substitute the name of your theme for the string themename.
5.	 Make your changes to the renamed function in the template.php file and

save the file.
6.	 Clear the Theme Registry.

Chapter 8

[189]

Let's step through a simple example.

In the default Drupal system, required fields in all forms are denoted with the
asterisk character (*) and with alt text that displays when you move your mouse
over the marker: This field is required. That's all okay, but if you would like to
break from the Drupal convention, you will need to modify the required marker.

To begin, you must get the original function, theme_form_required_marker().
It is located in includes/form.inc.

functiontheme_form_required_marker($variables) {
 // This is also used in the installer, pre-database setup.
 $t = get_t();
 $attributes = array(
 'class' => 'form-required',
 'title' => $t('This field is required.'),
);
return '<span' . drupal_attributes($attributes) . '>*';
}

Copy the function, then open your theme's template.php file and paste the function
into the file. Next, rename the function to yourtheme_form_required_marker. Now,
to inject the customizations: Let's change the asterisk (*) to an exclamation point (!)
and also make the tip text to be a bit more user friendly: This field cannot be left
blank.

The changed code looks like this:

functiontheme_form_required_marker($variables) {
 // This is also used in the installer, pre-database setup.
 $t = get_t();
 $attributes = array(
 'class' => 'form-required',
 'title' => $t('This field cannot be left blank.'),
);
return '<span' . drupal_attributes($attributes) . '>!';
}

Dealing with Forms

[190]

There are two primary advantages to this technique—it is relatively simple and your
changes are portable—you can copy this into any site and it will work for you, once
you change the name to match the theme. The primary disadvantage is that making
the change in this fashion impacts all the forms on your site, as you can see in the
following screenshot:

Chapter 8

[191]

Adding HTML via function attributes
The Drupal form API makes provisions for you to be able to add basic
HTML to a form via a limited set of attributes named #prefix, #suffix,
and #markup. These attributes are invoked from inside the function;
accordingly, this approach to modifying forms is used most frequently by
developers when they create the form.

•	 #prefix is used to add HTML before a form element
•	 #suffix is used to add HTML after an element
•	 #markup allows you to declare HTML as type #markup in

the form
Putting this into practice, one of the easiest applications of this technique
is to use it to wrap a form element in a div, with #prefix supplying the
opening tag, and #suffix supplying the closing tag.
This approach is generally less preferred, as it is less flexible and harder
to maintain going forward. If you are looking to modify an existing form,
the better practice is to create a function, as per the previous discussions.

As a practical matter, you can print out your form functions and modify them
directly from within your template.php file, but this is not the most attractive
alternative for overriding the output of an entire form. The better course of action
is to convert the function into a dedicated template. Template files are more flexible
and easier to work with. The next section of this chapter covers converting form
functions into form templates.

Creating dedicated templates for forms
In Chapter 4, we covered how you can convert themable functions into template
files. Using a similar technique, we can take the default functions that create Drupal
forms, and convert them into templates, thereby allowing us to easily manipulate
styling for individual forms.

At the most basic level, the technique has three steps:

1.	 Register the new template with Drupal.
2.	 Create a new template file and insert the function.
3.	 Make the modifications you desire to the new file.

The process is best described by way of an example.

Dealing with Forms

[192]

Let's say we want to create a customized User Registration form. There's neither a
dedicated template nor a comprehensive themable function for this form, so there's
no traditional override option available to us. Follow these steps:

1. You must identify the function that produces the form. In this case, it is the
function named user_register_form(), located in the file modules/user/
user.module.

2. Next, let's tell the system to look for a template when the form is called.
To do this, you must register the template with the system. Open your
template.php file and add the following to that file:
functionthemename_theme() {
return array(
 'user_register_form' => array(
 'template' => 'user-register-form',
 'render element' => 'form',
),
);
}

3. Substitute the name of your theme for the string themename in the first line
of code.

4. Save the file.
5. Create a new .tpl.php file in your theme directory. Name it user-

register-form.tpl.php.
6. Save the file.

You are now ready to expose the elements of the form array you want to style in the
new user-register-form.tpl.php file. You can then set whatever styling you wish
for the individual elements. Here's one way to do it.

<div id="registration_form">
<div class="field">
<?php
printdrupal_render($form['account']['name']); // prints the username
field
?>
</div>
<div class="field">
<?php
printdrupal_render($form['account']['mail']); // prints the email
field
?>
</div>

Chapter 8

[193]

<div class="field">
<?php
printdrupal_render($form['actions']['submit']); // print the submit
button
?>
</div>
</div>
</div>
<?php
printdrupal_render_children($form);
?>

Note that we ended the code for the tpl.php file with the function
drupal_render_children(). It is essential that you use this function
to close your form, as it will render any child or hidden elements needed
for the form to operate.

To view the arrays on the page, and thereby identify all the various
elements that are available to you, simply add the following line
of code to the tpl.php file you created: <?php print "<pre>";
print_r(array_values($form));print "</pre>"; ?>. Save the
file and reload the page in your browser. The system will now print on
the page a listing of the contents of the array.

Modifying forms with custom modules
Another alternative for modifying forms is the use of custom modules. The function
hook_form_alter() is the key to this technique; it allows you to add to, subtract
from, and modify the contents of an existing form. This is a powerful tool and is not
dependent upon the use of PHPTemplate; it works directly with the Drupal core.
At its most basic, form_alter is useful for modifying the presentation of one or
more forms (for example, data labels and text that appear with the form). At a more
advanced level, you can use this function to modify the functionality of the form (for
example, adding or subtracting fields).

form_alter opens up some intriguing possibilities, but the use of the function
requires a different approach than what we have used elsewhere in this book; to
implement this function, you will need to create a new module.

Dealing with Forms

[194]

Using a module to make theming changes may seem counter-intuitive,
but remember this is simply one option for making changes to a form's
appearance. If you are not comfortable with this approach, consider one
of the other techniques discussed in this chapter. There are, however,
situations in which you must use a module to change a form, for example,
to change the functionality of a form or to completely remove a required
form element.

Creating a new module to hold your form modifications may sound like a lot of
extra work, but it's not as bad as you might think. While a detailed discussion of
building modules is beyond the scope of this book, let's take a run at illustrating this
technique as it is relevant to the task at hand.

Assume we wish to make the following modifications to the forms on our site:

1.	 Change the data labels on the User Login Form.
2.	 Change the wording on the submit button of the User Login Form.
3.	 Change the data labels for the Request Password Form.

To accomplish these basic changes, we can either isolate and modify the user_login
function and the user_pass function, or we can create one new module, implement
form_alter(), and make all our required changes in one place.

While in this example we demonstrate the use of a module to make text
changes, this is probably not how this particular problem (changing
default system text) would be addressed in the real world. If you only
seek to change the default system text, there is another option. If you
don't mind installing and maintaining an additional module, the easiest
solution to this problem is to employ the String Overrides module.
The module enables you to change from within the admin system any
text that is passed through the translate function (t()). This means you
can override almost any of the text in the system without having to bother
with any coding. Learn more at: http://drupal.org/ project/
stringoverrides.

Let's work through an example. We will create a new module and use it to make
changes to several forms simultaneously.

First, create a new directory to hold the custom module. If it does not already exist,
create a directory named modules and place it inside sites/all. Now create a
directory with your module name and place it inside sites/all/modules. Let's
name this new module formmod.

Chapter 8

[195]

Next, modules, like themes, need to be accompanied by a .info file. Name the file
formmod.info and save it to our formmod directory. The contents of the file should
be as follows:

; Id
name = Form Mods
description = Contains modifications to the site forms.
package = Packt
core = 7.x

Comments are designated by placing a semicolon (;) at the beginning of
the line.

Note that the previous code specifies our new module's name for the name field.
There is a description as well, which will appear in the administration interface
(in the module manager's listing of all the installed modules). The value for package
is used to determine where this module will appear in the groupings of modules
inside the module manager. In this case, instead of running the risk of confusion by
placing our custom module within the listing of modules in the Drupal core, we have
specified a new group (named Packt) which will hold our custom module. The core
field is required and should indicate which version of Drupal this module supports.

The .info file for modules has only three required fields: name,
description, and core. There are several optional fields. To learn
more, visit the Drupal 7 Module Developer's Guide page on .info files:
http://drupal.org/node/542202.

Next, let's create a new file and name it formmod.module—this is where we will add
the function and our modifications. Here are the contents of the file:

<?php
// $Id:
/**
*
* Adds modifications to various site forms.
*
*/
functionformmod_form_alter(&$form, $form_state, $form_id) {
 // This part changes the user login form
if ($form_id == 'user_login') {
 // Change the text below the username field to 'Enter your
username.'

Dealing with Forms

[196]

 $form['name']['#description'] = t('Enter your username.');
 // Change the text on the submit button to 'enter'
 $form['actions']['submit']['#value'] = t('let me in!');
 }
 // This part changes the request password form
if ($form_id == 'user_pass') {
 // Changes the data label to add basic instructions to form
 $form['name']['#title'] =
t('Enter your username or email address, then click the request
password button');
 // Change the text on the submit button to 'request password'
 $form['actions']['submit']['#value'] = t('request password');
 }
}

Note that this module file opens with a PHP tag (<?php), but does
not include a closing tag; this is intentional and necessary to avoid
formatting problems. Note also the second line: //Id—this is
a token that is used by Drupal.org's version control system. It is
traditional to add this line even if you do not plan to put your module
on Drupal.org. You can learn more about these issues by visiting the
Coding Standards page at: http://drupal.org/node/318.

After you have entered the contents, save the file to the formmod directory. You are
done. That's all there is to creating a new module!

Our preceding example uses a single module to hold a single function
which contains changes to multiple forms. If you wished instead to
implement a single module containing separate functions for each form,
you can do so.

Chapter 8

[197]

Next, let's activate our new module. Log in to the admin system and head over to the
Modules Manager by clicking on Modules on the Management menu. Scroll down
the list of modules and you will find a new section named PACKT, along with our
new module, Form Mods. You must activate the module and click save to enable this
module. Once you have completed this step, the changes made to the forms will be
immediately visible.

The Webform Module
If you need a custom form, there is a lot to be said for installing the
Webform Module and using it to create and manage your form. Most
people will find the option simpler to execute than working with the
Form API. Webform allows you to create custom fields of various types
and to create complex forms. The module has the added advantage of also
providing storage of form results in the site's database and providing a
reporting interface for the results gathered by the form.
The module adds a new content type to your site and also allows you to
build forms on any content type in the system. This makes it very easy to
theme your custom forms. It's fast, it's easy, it simplifies theming, and it
has additional advanced features not readily available in the Drupal Form
API. For most people, Webforms will be the most attractive solution! See
Chapter 10 to learn more about this module.

Dealing with Forms

[198]

Summary
This chapter has covered one of the more challenging areas of Drupal theming, that
is, dealing with forms in Drupal. The default forms covered in this chapter can be
styled through the application of a variety of techniques, both with and without the
assistance of PHPTemplate.

In this chapter, we looked at the various theming techniques and identified the
key components associated with each task and where to find them. We also
introduced the idea of creating a module to control form modifications, via the
function form_alter.

In the next chapter, we round up a number of the most common issues users
encounter in the course of working with Drupal themes and provide suggestions
for dealing with those issues.

Overcoming Common
Challenges in Drupal

Theming
In this chapter we round up an assortment of issues that you are likely to encounter
at some point during your Drupal theming efforts. While not all these issues are
likely to crop up during any one project, if you work on Drupal themes over time the
odds are that you will encounter most of these at some point.

The issues are arranged loosely, from general to more specific. Some of these topics
are dealt with in more detail elsewhere, particularly in terms of the principles behind
the solutions given. The focus here is on quick fixes to common problems, not on
basic skills. Among the topics we cover:

•	 Cross-browsing compatibility
•	 Accessibility
•	 Creating template suggestions for specific features and modules
•	 Theming Panels
•	 Theming the Maintenance Page

Let's start with an issue that is common to all themers—how to create themes that
work consistently well when viewed in different web browsers.

Overcoming Common Challenges in Drupal Theming

[200]

Maintaining cross-browser compatibility
In an ideal world, you would be able to maintain a consistent appearance for your
web pages regardless of the browser used to view them. Unfortunately, it's not an
ideal world. The best that can be hoped for is a high degree of consistency, with
graceful degradation where that is not possible.

One of the best ways to approach creating a site that works well across platforms is to
respect best practices in coding and to strive to write code that is standards compliant.
The relevant standards are outlined by the World Wide Web Consortium, commonly
known as the W3C. In addition to outlining the various standards, their website
includes a number of resources. Visit the site at http://www.w3.org/.

There are a number of elements involved in creating web pages that comply with
standards. Your best bet is to add a validator to your toolkit. Be sure to validate both
the CSS and the HTML in your theme. In the next section of this chapter, we discuss
several popular validation tools.

If you look at the source code for Drupal 7, you will see that
the system now uses the doctype definition (DTD) xhtml-
rdfa-1, but for validation purposes, simply validate against the
standard XHTML 1.0 Strict.

While creating consistent and standards compliant code is going to help assure
that your site displays well across multiple browsers, it is not going to solve all the
problems that can arise. The simple fact is that some browsers—particularly older
browsers—lack support for all the current standards and that, while some things
will simply be ignored, others might be interpreted in odd ways. The only way to
manage this is to test religiously. Maintaining a full browser test bed is difficult,
due to the wide number of combinations that exist, but you can certainly download
and install the most recent versions of all the popular browsers and use them for
your first line testing. For more comprehensive testing, consider one of the services
discussed immediately in the following section.

Chapter 9

[201]

Assessing cross-browser compatibility
The only way to truly assess the effectiveness of your efforts is to test your
themes in the various versions of the browsers you are targeting. There
are services that provide browser testing on your behalf. The services are
often a good option, as they provide access to not only a wider variety of
browsers but also to more versions of the same browser. Some services
also allow you test how your themes will look on different mobile
devices. Among the services to consider are:
Adobe Browser Lab: This convenient and well-designed utility is part of
the Adobe CS Live suite of tools. It is available free of charge to owners
of Adobe CS5. The tool provides live preview of both static and dynamic
web pages. It allows for easy A/B comparisons and basic diagnostics. To
use the service, visit http://browserlab.adobe.com.
Browsershots: The site provides a free service that allows you to submit
a URL, then check back to see screenshots of the page in all the various
browsers you select. While free, it can take a while to get results and there
is no support for Apple or mobile devices. Visit the site at: http://www.
browsershots.org.
CrossBrowserTesting: This commercial service offers a very wide range
of operating systems and browsers, both traditional and mobile. Want to
see how your site looks on Win98 SE running Netscape 4? You can do it
here! The service includes both real time testing and a screenshots option.
The site is available for a monthly subscription fee, or you can just try it
out free for a week. Visit: http://crossbrowsertesting.com.

Creating accessible themes
A significant percentage of the web audience has some degree of difficulty reading or
navigating websites. As a themer, one of your goals should be to assure that the sites
you build are usable by the largest number of people; that means by definition you
must account for varying degrees of ability and disability. While creating accessible
websites is not only the right thing to do, for many corporate and government
websites in America and Europe, it is also a legal issue. Given these imperatives,
themers need to have an understanding of the various accessibility standards and
what it takes to meet the basic requirements.

The most commonly applied standards for web accessibility are promulgated by
the W3C under the name the Web Accessibility Initiative (WAI). A subset of
those guidelines, the Web Content Accessibility Guidelines (WCAG), is targeted
at web developers. The WAI section of the W3C website includes a large amount
of information on what it means to create accessible sites, along with resources to
support your efforts.

Overcoming Common Challenges in Drupal Theming

[202]

Visit the WAI site at: http://www.w3.org/WAI/.

The first step in creating an accessible site is to establish what level of compliance
is required by the site owner. While U.S. corporate and government clients will be
concerned about issues like Section 508 compliance, other clients may have different
standards. Even within the WCAG there are three levels of compliance—A, AA, and
AAA. It's essential that you get a commitment on this issue; the amount of work
it takes to meet the various standards is significant and the higher level standards
impose considerable limitations on your design discretion.

Section 508 is the standard imposed by the U.S. Government. Learn
more: http://www.section508.gov/.

Validation tools
Once you know the standard you must achieve, you will have an outline of the
techniques you must implement, and the things you must avoid. Validation tools
make it easy for you to identify problem spots and to diagnose issues that relate
to compliance with the standards. Having a good validation tool is key to your
efforts. There are two excellent plugins for the Firefox browser that provide access
to validation tools from directly inside your browser.

The Web Developer add-on for the Firefox browser includes a variety of tools,
including your choice of validation tests: CSS, HTML, WAI, and Section 508, among
others. The add-on also makes it easy for you to disable JavaScript, change screen
color depth, and resize the screen and the fonts—all techniques that make it easier
for you to assess how your theme will perform under the various conditions that are
likely to exist for at least some of the users in your audience. Download your copy
from: https://addons.mozilla.org/en-us/firefox/addon/web-developer/.

A second tool to consider is called Total Validator. To use this tool, you must first
download and install the Total Validator application. Once installed, you can also
download a Firefox add-on to give you access to the application's features directly
from within your browser. It's a (tiny) bit more effort to set up, but well worth
it. Total Validator is an excellent validation tool that covers a very wide range of
standards. It gives very good feedback, even going so far as to display your source
code marked up to show where problems exist. As an added bonus, the application
also includes a link checker. To get the Total Validator application, start here:
http://www.totalvalidator.com/. Once it is installed, get the Firefox add-on at
https://addons.mozilla.org/en-US/firefox/addon/total-validator/.

Chapter 9

[203]

Drupal theme accessibility basics
Your themes play a key role in Drupal accessibility. Because the themes control the
presentation layer, the themes must be designed with accessibility in mind. While
the creation of accessible themes is a broad topic, the basic principles covered in this
section need to be followed to be successful.

The Theme Handbook at Drupal.org maintains a good section on
improving accessibility at: http://drupal.org/node/464472.

Avoiding tables
One of the most fundamental principles of accessibility is to avoid tables. Use CSS
for page layout. Tables are not optimal and should be avoided (an exception to this
general rule is made only for complex tabular data.) There are a number of good
pure CSS themes out there; use one of them as a starting point for your theming
efforts if you are not sure where to begin.

Creating accessible forms
Forms are a constant source of frustration for users of all abilities. Adhere to these
basic principles and everyone will appreciate you:

•	 Put your instructions at the top of the form
•	 Clearly identify required fields; do not rely exclusively on font color!
•	 Test your field order to make sure users can advance through the form

logically using only a keyboard; elements placed out of order cause
confusion, and difficulties for many users

•	 Form field labels need to be closely associated with the fields and should
provide additional help where the possibility of ambiguity exists

•	 Avoid conditional select boxes whose content updates with JavaScript; they
will fail where the user has disabled JavaScript

•	 Make sure that your validation warning messages are clear and unequivocal
and do not require users to scroll to view them

•	 Do not allow your system to dump the user's data in the event of form
validation warnings

Overcoming Common Challenges in Drupal Theming

[204]

Not relying on JavaScript
A number of users are working with browsers that do not have JavaScript enabled. If
you build a theme that relies on JavaScript for functionality, you need to make sure
that the theme degrades gracefully and that alternatives are provided. Always test to
make sure the page is navigable with only a keyboard. You also should be aware that
JavaScript may cause problems with screen readers.

This is easy to test—both the Web Developer add-on and Total
Validator (discussed previously) let you temporarily disable
JavaScript for page testing.

Making sure your text resizes
Use proper CSS coding to assure that the text on the page can be resized by the
user's browser. Test this function to assess the impact on your layout.

Ordering elements on the screen logically
Place the page elements in a logical order inside your code. If the visitor views the
site without the benefit of the CSS, the logical structure you have created in the code
will help maintain the integrity of the page. The use of skip to or jump links can also
help tie things together.

Providing hover states and visited states
Make sure your link classes include both a hover state and a visited state; these
indicators make it much easier for users to identify links and to keep track of
where they have already been.

Providing alternatives to applets and plugins
If the page requires the use of an applet or plugin, provide a text link to the
download of the applet or plugin or provide an alternative for the display of
the content.

Chapter 9

[205]

Supporting a semantic structure
The H tags in HTML are intended to allow the people who create content to impose
hierarchical ordering on that content. Proper use of the H tags makes it easy for users
to determine the information structure on the page and the relationship between
the various parts of the content. When designing your CSS selectors, make sure you
provide for the use of H tags in proper sequence and also produce for the content
team a style guide to help them apply the styles consistently when they create the
page content.

Using system fonts for your menus
Use of image files for your menus is not optimal. In addition to causing accessibility
problems they can also slow down page loading and create problems for the search
engines. While proper use of the alt image attribute can help mitigate this, it is
simply better to avoid the whole issue by using text for the menu items.

Using capitalization appropriately
Use of ALL CAPS in your text can cause unintended consequences for screen
readers, which may interpret the presence of all caps as an acronym that needs
to be spelled out to the listener.

Using a suitable color scheme
Make sure your color selection maintains an appropriate level of contrast for viewers
with visual acuity problems. Also remember to test your system in black and white
to make sure it remains navigable with the colors turned off.

Both the Web Developer and Total Validator tools can help you with
testing contrast and color depth.

Using jump links
Jump links should be placed at the top of the page to allow visitors to jump directly
to the main content or key functionality. This is particularly critical where you have
included decorative elements, such as a header image or a piece of Flash, in the space
preceding the main page content.

The Drupal.org site contains a good listing of modules that help with
accessibility. Visit: http://drupal.org/node/394252.

Overcoming Common Challenges in Drupal Theming

[206]

Creating template suggestions for fields
With the arrival of custom fields in the core of Drupal 7, one of the tricks you need to
add to your repertoire is the ability to create template suggestions for custom fields.
Drupal makes this easy by giving you a default template to use.

Here's how to set up a template suggestion for a field.

1.	 Find the machine name of the field you wish to style. Typically this is done
by viewing the Content Type which contains the field. Select the Manage
Fields option next to the name of the content type. On the page that loads
you can see a list of all the fields. The Name column contains the machine
name of the field—that's the data you need.

2.	 Next, go to the directory /modules/field/theme and copy the file field.
tpl.php.

3.	 Go to your active theme directory, paste in the field.tpl.php file.
4.	 Rename the file to include the machine name of the field you wish to style.

Use this syntax: field--[machinename].tpl.php.
5.	 Open the file and remove the comment field immediately above the code

(The comment begins with this text: THIS FILE IS NOT TO BE USED…).
6.	 Make the changes you desire to the file.
7.	 Save the file.
8.	 Clear the theme registry.

You should be able to see your styling on the web page.

You can actually go even further with this technique, and style only the fields
that appear on specific content types, by using the following template suggestion
structure: field--[machinename]--[type].tpl.php.

Creating template suggestions for
specific nodes
PHPTemplate provides a specific template for nodes—node.tpl.php. Using the
same principles of precedence we've seen throughout, you can provide template
suggestions to suit your needs. To provide a template for the blog node, for example,
create node--blog.tpl.php, for the story node, node--story.tpl.php. In the
absence of a more specific template, the system will apply the default node.tpl.php
file.

Chapter 9

[207]

The following table shows the suggestions for the default system:

suggestion affected node
node--blog.tpl.php blog entries
node--forum.tpl.php forum entries
node--book.tpl.php book entries
node--story.tpl.php story entries
node--page.tpl.php page entries
node--poll.tpl.php Polls in node view

Suggestions for key modules
In Chapter 4, Using Intercepts and Overrides we discussed at length the process of
intercepting and overriding default templates and themable functions. Those
templates and functions supply much of the key output on a Drupal site and many
are positioned on the page through the assignment of blocks to regions.

In addition to overriding the default template, you can create template suggestions
that give you even more granular control over your module output. In this section,
we list the template suggestions that are relevant to the key modules in the system.

Don't forget: If you create a template suggestion, the base template must
also be located in the same theme directory!

Styling the Comment module
The comments function in Drupal is controlled by two templates, comment-
wrapper.tpl.php and comment.tpl.php. It's worth noting that, in Drupal 7, both
of the comment templates are actually displayed inside of the page area that is
controlled by the node.tpl.php template. Keep this in mind when you are creating
your styling as your comment templates will be impacted by the styling that wraps
them inside the node.

The base templates of the comment module can be dynamically styled using the
following suggestions:

•	 The principal comment template, comment.tpl.php, can be styled according
to the node type with which the comment is associated by using the syntax
comment--[type].tpl.php.

Overcoming Common Challenges in Drupal Theming

[208]

•	 The default comment wrapper template (comment-wrapper.tpl.php) can
also be styled according to the node with the syntax comment-wrapper--
[type].tpl.php.

Note that the Comments module in Drupal also supplies output for the
Forums module. If you want to style the comments specifically for the
forum, use comment--forum.tpl.php and comment-wrapper--
forum.tpl.php.

Styling the Forum module
The base template for the Forum module is forums.tpl.php. The system also
includes two other default templates, forums-topics.tpl.php and forums-
containers.tpl.php. The former handles all forum topics, the latter all forum
containers.

There are several options available for creating suggestions that target both forum
containers and topics:

Suggestion Will apply to...
forums-topics--[forumID].tpl.
php

Forum topics belonging to a forum of a specific
ID

forums-containers--[forumID].
tpl.php

Forum containers belonging to a forum of a
specific ID

forums--[forumID].tpl.php Forum of a specific ID

Styling the Poll module
There are multiple default templates for the Poll module.

•	 poll-results.tpl.php handles the poll results for both nodes and blocks.
You can target the results in block view by using the suggestion poll-
results--[block].tpl.php.

•	 poll-vote.tpl.php handles the voting form. You can target the form in
block view by using the suggestion poll-vote--[block].tpl.php.

•	 poll-bar.tpl.php handles the individual bars in the poll results. You
can target the individual bars when displayed in block view by using the
suggestion poll-bar--[block].tpl.php.

Chapter 9

[209]

Styling the Profile module
The base template profile-wrapper.tpl.php is the template used to display the
member listing page for browsing. You can create a suggestion for the template by
using the syntax profile-wrapper--[field].tpl.php.

Styling the Search module
Drupal provides the search-results.tpl.php template for handling the search
results; that template can be used as a base template for more specific suggestions.

The search results in the system are automatically categorized as either node or
user and the different categories of results are displayed on different tabs on the
search results page. To style your search results by type, create one or more of the
following:

Suggestion Will apply to...
search-results--node.tpl.php Controls the node type search results display, as

a whole
search-results--user.tpl.php Controls the user type search results display, as

a whole
search-result--node.tpl.php Controls individual node type search results
search-result--user.tpl.php Controls individual user type search results

Theming Views
The Views module is a powerful tool that enables you to create lists of content items
for display on your site. The module is quite popular with Drupal site developers as
it provides an easy way to create queries and obtain the output for display as pages
or blocks.

As a themer, you are very likely to have to deal with Views output at some point
in time. Theming views, however, can be a bit tricky if you are unfamiliar with the
way the module works. In this section, we take a quick look at the basics of theming
Views.

The Views module is discussed further in Chapter 10, Useful Extensions
for Themers.

Overcoming Common Challenges in Drupal Theming

[210]

When Views is enabled on a site, you can access the Views Dashboard by clicking
the Structure option on the Management Menu, and then selecting the option Views.
The Views Dashboard shows a list of all the views in the system and provides you
with links to edit them, as shown in the following screenshot:

To get to the information you need to begin theming your views, click the Edit link
next to the view you wish to theme. Clicking the link opens the Views editing page.
There's a lot of information there, but you are only concerned with a narrow subset
of that information.

The first thing you must do is select what it is you wish to theme. If you wish to
theme a page view, click the option Page at the top left of the screen. If you wish to
theme a block view, click the option Block. The screen will update, based on your
selection. Look for the box labeled Style settings—this contains the key information
you need.

Chapter 9

[211]

The Style settings box contains information about the layout used by the view.
You can update any of the values shown in the box by clicking on them; when you
click you will note that the lower portion of the page refreshes, listing the options
available for that choice. The most important of the options listed here—at least from
a themer's point of view—is the option named Theme. Clicking the option Theme
will present you with a list of all the possible templates and suggestions available for
you to theme.

For my example, the front page view. Click edit, then select page, then click on
Theme: Information in the Style settings box. The following screenshot shows
you the Page Theming information output, which contains a list of template files.

The list of templates is grouped as follows:

•	 Display output: The templates listed here control the structure of the overall
views, including the position of the primary view content.

Overcoming Common Challenges in Drupal Theming

[212]

•	 Style output: The templates here control the structure of the view's display
style, for example, a list, a table, or unformatted output. The templates here
will control the view title and the code surrounding each row.

•	 Row style output: These templates control the internal formatting of the
rows.

Additionally, though we do not see it in the preceding example, many views also
include a further grouping:

•	 Fields: The templates listed here will be for each field in the display.

The Semantic Views module, discussed in Chapter 10, provides a useful
aid when it comes to theming Fields view styles.

The listing of templates shows you all the possible template files you could use. The
list is ordered from the most general to the most specific. Like other templates in the
Drupal system, the views template suggestions create a hierarchy, with the more
specific templates taking precedence over the more general.

To create a template, click the name of the group containing the template you desire;
the page will refresh and show you the code for the base template. Copy the code
and create a new file inside the active theme directory. Name it to match the base
template or one of the suggestions, as needed. Place your code in the new file, refresh
the theme registry, and you are done.

A basic Views theming tutorial can be found at: http://drupal.org/
node/352970.

Theming Panels
The Panels module makes it easy for you to create complex layouts without having
to create custom templates. With Panels installed on your site, you can build layouts
directly from inside the administration system. Each panel can hold any number of
elements from your system or even custom content.

The Panels module is discussed further in Chapter 10.

Chapter 9

[213]

In most cases, the contents of your panels are drawn from existing nodes and
modules and the styling of those nodes and modules exhibit will be that supplied
by the system for those elements. You will style each of those elements individually,
even though the output's positioning on the page is controlled by the panel.

It is possible, however, to embed your own CSS in Panels and thereby effect all the
elements contained within the panel. To embed CSS in a panel, select the Structure
option on the Management Menu. On the page that loads, select Panels, then
choose the Edit link next to the name of the panel you wish to modify. On the Panel
editing page, click the option General. The page reloads, as shown in the following
screenshot:

In the CSS ID field you can enter the name of the selector you want to apply to the
Panel. In the field labeled CSS-code, you can even add the full version of the selector
if you wish. The better course, however, is to use the theme's stylesheet to hold your
CSS ID.

Overcoming Common Challenges in Drupal Theming

[214]

If you are adding an existing node to a panel, you also have the option to create a
unique identifier for the pane that can then be used to create a template suggestion.
To enable this option, edit your panel, then select the content option. Click the
gear icon for the pane you wish to modify. In the pop up that opens, select existing
node. The Configure new Existing node pop up opens, as shown in the following
screenshot:

Enter a simple label in the Template identifier field. After you save your changes,
you can theme this pane by creating a new template by the name of node-panel-
[identifier].tpl.php.

Theming the maintenance page
If you wish to display a custom template when your site is in maintenance mode, or
in the event of a database failure, you can do so by working with the maintenance
page functionality. The system includes a default template, located at /modules/
system/maintenance-page.tpl.php.

Chapter 9

[215]

To set up your custom maintenance page, there are two steps: First, override the
default template file by copying it into your active theme directory. Second, you
must also modify your settings.php file to instruct the system to display the
template. You can do this by enabling the $conf variable and adding the internal
name of your theme, like this:

$conf['maintenance_theme'] = 'themename';

Note that your settings.php file is likely to be write-protected. You
will need to make changes to the permissions to modify the file. Do not
forget to change the permissions back after you've finished, in order to
protect the file.

If you wish to have a separate template that is used only when there is a database
failure, there is a template suggestion available: maintenance-page--offline.
tpl.php. However, as the database will not be available when that is displayed,
you have to hardcode a number of additional items into that template file to get it to
display properly. If you wish to explore this topic, please visit http://drupal.org/
node/195435 for a more detailed discussion of what is involved.

Troubleshooting your theme
Face it, it happens: You make a change and something goes thud… Unexpected
results sometimes result from mundane actions; when they do, what should you
do next?

Writing about troubleshooting is inherently difficult, as it is impossible to anticipate
the enormous range of variables that can contribute to any one error. There are,
however, some common scenarios that you are likely to encounter at some point. In
this section, we try to hit some of those common problems and offer some ideas for
solutions.

Basic principles
Before we go into specifics, the following are a few of basic principles you should
keep in mind:

Use a validator: As discussed earlier in this chapter, a good validator can help you
create standards compliant code and standards compliant code is less likely to create
conflicts and inconsistencies.

1. Use sub-themes wherever possible: If something goes horribly wrong, you
can always roll things back by reverting to the original base theme files.

Overcoming Common Challenges in Drupal Theming

[216]

2.	 Test on your development server, not on the live site.
3.	 Use a theme switcher when upgrading a live theme: If you have to upgrade a

theme on a live site, give yourself some room for error by installing a theme
switcher module, then assign the new theme to a few private pages to test it
before you switch it on for the entire site.

See Chapter 10 for some suggested theme switcher modules.

4.	 Use Firebug to identify styling issues: Highlight the problematic area,
right-click, and select Inspect Element.

5.	 When you need a reality check, use Stark. The Stark theme included with the
core is intended to help you see only the default system styling. If you can't
get to the bottom of a styling issue, switch over to Stark and compare how
the problematic element looks with only the default system styling in place.

Troubleshooting common problems
Here are some common problems we've all seen at one time or another:

Problem Suggestions
I just changed my styling and I can't see
any difference.

Make sure you have disabled CSS compression
(located in the Performance Manager).

My site is a total wreck in Internet
Explorer.

You may have run up against IE's stylesheet
limit (31 stylesheets). You can work around
this by enabling the Optimize CSS option in the
Performance Manager (though enabling this
may cause the problem mentioned immediately
above!). The only real solution here is to combine
some stylesheets to try to get below the limit.

My CSS (or template) overrides are not
working.

Clear the cache. Follow that with a hard refresh
on your browser.

The dreaded White Screen of Death
(that is, I see nothing at all on the
screen).

There's a great list of potential causes here:
http://drupal.org/node/158043.

All my styling has disappeared. You may have moved or deleted the active
theme. If that is not the case, check the path to
your CSS by viewing the source of the page.

Neither my styles nor my images are
showing up.

Check permissions on the directories that relate
to your themes.

Chapter 9

[217]

Problem Suggestions
Layout breaks; content overlaps or
overflows causing columns to break.

Validate your CSS and check whether you have
loaded content that exceeds the maximum space
available in one of the columns.

Some of my visitors can't see a page/
module/block.

Check the Permissions Manager to make sure all
the proper roles have all the necessary privileges.

I can see the home page, but none of
the internal pages.

This is likely a problem related somehow to
Apache. Likely areas to check are whether
mod_rewrite is installed and whether your
.htaccess file is located in the right place.

I can't figure out where the output on
the screen comes from.

Install and use the Theme Developer extension.

I can't figure out what template
suggestion to use.

Install and use the Theme Developer extension.

My theme's logo/slogan/site name
doesn't show up.

Check your theme configuration settings to make
sure you have not disabled those functions.

I changed themes and now some of my
blocks are gone.

Your new theme probably has different regions
than your old theme. When you changed themes,
the modules assigned to the missing regions
were hidden from view.

If you are having a problem, you are most likely not alone. If you can't
sort things out on your own, you might want to consider a visit to the
Drupal Support Forum: http://drupal.org/forum.

Summary
This chapter looked at an assortment of issues that you are likely to see during
the course of Drupal theming. The list of topics ranges broadly, from the concepts
behind building cross-browser compatible sites and working with web accessibility,
to troubleshooting common theme problems. In between, we looked at how to use
template suggestions to target output in certain narrow circumstances.

The content in this chapter supplements and draws upon the principles discussed
in the early chapters of this book and is intended to round up a number of
miscellaneous issues that are not conveniently addressed elsewhere in this text.

In the final chapter, we look at extensions and other resources you may find useful
during site building and theming.

Useful Extensions for
Themers

Throughout this book, we have used a variety of tools to demonstrate the various
techniques. In addition to a basic toolset made up of an HTML editor, an FTP
program, and a browser, we also used several specialized tools. In this chapter, we
round up a listing of all the specialized tools used in this book, along with a number
of additional items that you may find useful when working on your themes.

Each tool is listed along with a brief synopsis and a URL to the relevant project
site. This list should not be viewed as an endorsement of any particular module or
product over any other; it is simply my attempt to help you discover some of the
tools that are at your disposal.

The tools listed here fall into two categories:

•	 Drupal modules
•	 Non-Drupal third-party software

Drupal modules
There exist within the Drupal.org site a number of modules that are relevant to your
work of theming a site. Some are straightforward tools that make your standard
theming tasks easier, others are extensions to Drupal functionality that enable to you
do new things, or to do things from the admin interface that normally would require
working with the code. The list here is not meant to be comprehensive, but it does
list all the key modules that are either presently available for Drupal 7 or at least in
development. There are additional relevant modules that are not listed here, as at the
time this was written, they showed no signs of providing a Drupal 7 version.

Useful Extensions for Themers

[220]

Caution
One thing to keep in mind here—some of these modules attempt to
reduce complex tasks to simple GUI-based admin interfaces. While
that is a wonderful and worthy effort, you should be conscious of
the fact that sometimes tools of this nature can raise performance
and security issues and due to their complexity, sometimes cause
conflicts with other modules that also are designed to perform
at least part of the functions being fulfilled by the more complex
module. As with any new module, test it out locally first and make
sure it not only does what you want, but also does not provide any
unpleasant surprises.

The modules covered in this chapter include:

•	 Administration Menu
•	 Chaos Tool Suit
•	 Colorbox
•	 Conditional Stylesheets
•	 Devel
•	 @font-your-face
•	 Frontpage
•	 HTML5 Tools
•	 .mobi loader
•	 Mobile Theme
•	 Nice Menus
•	 Noggin
•	 Organic Groups
•	 Panels
•	 Semantic Views
•	 Skinr
•	 Style Guide
•	 Sweaver
•	 Taxonomy Theme
•	 Theme Developer
•	 ThemeKey

Chapter 10

[221]

•	 Views
•	 Webform

Administration Menu
The Administration Menu was a mainstay of many Drupal sites built during the
lifespan of Drupal 6.x. With the arrival of Drupal 7, we thought it unlikely we
would need the module, as the new toolbar functionality in the core accomplished
a lot of the same thing. In the course of writing this, however, we installed
Administration Menu and were pleasantly surprised to find that not only can you
run the old-style Administration Menu, but they have also now included the option
to run a Toolbar-style Administration Menu, as shown in the following screenshot:

The Administration Menu Toolbar offers all the options of the default Toolbar plus
the added advantage of exposing all the menu options without having to navigate
through sub-menus on the overlay. Additionally, you have fast access to clearing
the caching, running cron, and disabling the Devel module (assuming you have it
installed). A great little tweak to the new Drupal 7 administration interface.

Useful Extensions for Themers

[222]

View the project at: http://drupal.org/project/admin_menu.

Chaos Tool Suite
This module provides a collection of APIs and tools to assist developers. Though
the module is required by both the Views and Panels modules, discussed elsewhere
in this chapter, it provides other features that also make it attractive. Among the
tools to help themers are the Form Wizard, which simplifies the creation of complex
forms, and the Dependent widget that allows you to set conditional field visibility on
forms. The suite also includes CSS Tools to help cache and sanitize your CSS.

Learn more at http://drupal.org/project/ctools.

Colorbox
The Colorbox module for Drupal provides a jQuery-based lightbox plugin. It
integrates the third-party plugin of the same name (http://colorpowered.com/
colorbox/). The module allows you to easily create lightboxes for images, forms,
and content. The module supports the most commonly requested features, including
slideshows, captions, and the preloading of images.

Colorbox comes with a selection of styles or you can create your own with CSS.
To run this module, you must first download and install the Colorbox plugin
from the aforementioned URL. Visit the Colorbox Drupal module project page at:
http://drupal.org/project/colorbox.

Conditional Stylesheets
The module allows themers to easily address cross-browser compatibility issues with
Internet Explorer. With this module installed, you can add stylesheets targeting the
browser via the theme's .info file, rather than having to modify the template.php
file. The module relies on the conditional comments syntax originated by Microsoft.

To learn more, visit the project site at http://drupal.org/project/conditional_
styles.

Devel
The Devel module is a suite of tools that are useful to both module and theme
developers. The module provides a suite of useful tools and utilities. Among the
options it provides:

•	 Auto-generate content, menus, taxonomies, and users

Chapter 10

[223]

•	 Print summaries of DB queries
•	 Print arrays
•	 Log performance
•	 Summaries of node access

The module is also a prerequisite to the Theme Developer module, discussed
later in this chapter.

Learn more: http://drupal.org/project/devel.

@font-your-face
@font-your-face provides an admin interface for browsing and applying web
fonts to your Drupal themes. The module employs the CSS @font-face syntax and
draws upon a variety of online font resources, including Google Fonts, Typekit.
com, KERNEST, and others. The system automatically loads fonts from the selected
sources and you can apply them to the styles you designate—without having to
manually edit the stylesheets. It's easy-to-use and has the potential to change the way
you select and use fonts on your websites.

@font-your-face requires the Views module to function. Learn more at the project
site: http://drupal.org/project/fontyourface.

Frontpage
This module serves a very specific purpose—it allows you to designate, from the
admin interface, different front pages for anonymous and authenticated users.
Though you can accomplish the same thing through use of $classes and a bit of
work, the module makes it possible for anyone to set this up without having to resort
to coding.

Visit the project site at http://drupal.org/project/frontpage.

HTML5 Tools
This module, still in development at the time this was written, aims to allow Drupal
sites to be built using HTML 5. The module includes multiple tools intended to get
HTML5 elements into Drupal, from forms, to DOCTYPE, to markup and the various
Drupal entities. This module looks promising, but it is still too early to evaluate it.

Track their progress at http://drupal.org/project/html5_tools.

Useful Extensions for Themers

[224]

.mobi Loader
The .mobi Loader module is intended to work with the .mobi theme—a specialty
theme intended for use specifically on mobile devices. The module automatically
detects requesting the .mobi alias of the site and overrides the default theme with
the .mobi theme.

View the project at http://drupal.org/project/mobi_loader.

Mobile Theme
Mobile Theme is a theme switcher. The module adds the ability for the administrator
to designate a theme for use with mobile devices directly from within the Theme
Manager. When site visitors access the site on mobile devices, they selected theme
will be displayed in preference to the default theme.

Learn more at http://drupal.org/project/mobile_theme.

Nice Menus
Need a quick drop-down menu solution? Nice Menus has the answer. This module
provides multiple menus with configurable multi-tier menus that can be positioned
on your page via the Blocks Manager. The system supports up to ten horizontal and
vertical menus with multiple levels. The following screenshot shows a vertical menu
configured with a fold right sub-menu:

Chapter 10

[225]

Menus created with Nice Menus are predominantly CSS. You can style them easily
by overriding the default selectors. The module developer has also kindly included
theme functions that give you even more control over the appearance. The Nice
Menus project includes decent documentation to get you started.

Learn more at: http://drupal.org/project/nice_menus.

Two other menu modules to consider are Simple Menu:
http://drupal.org/project/simplemenu and Mega
Menu: http://drupal.org/project/megamenu.

Useful Extensions for Themers

[226]

Noggin
The Noggin module closes a gap in the core Drupal themes by providing the ability
to add a custom header image to the default Drupal themes directly from the Theme
Manager. As you can see in the following screenshot, the module adds a new section
to the Theme specific configuration settings page:

Using the controls on the page, you can upload the header image of your choice to
any of the default themes. For themes that employ different markup, you can add a
custom CSS selector to enable the functionality.

Visit the project at http://drupal.org/project/noggin.

Organic Groups
Organic Groups is not directly about theming, but if you need to enable users to
create and manage their own groups, then this module is a lifesaver. We mention it
here because the implementation of this module makes it easy to control block and
content visibility by group. Additionally, you can also set up the module to provide
different themes for different groups of users.

Chapter 10

[227]

Organic Groups is a very powerful module and quite popular. An entire eco-system
of modules has grown up around Organic Groups and there are many options
available here. It powers come very big sites and makes building intranet and
extranet-type functionality much simpler.

Learn more by visiting the project page: http://drupal.org/project/og.

Panels
The Panels module makes the creation of multi-column layouts a breeze. With
Panels, you are able to divide a page into content areas and control the content in
each area. Blocks and nodes can be mixed freely. The Panels module also allows you
to create custom blocks, so-called "mini Panels" using similar logic and tools.

The system comes with several default two and three column formats, but you
can do virtually anything you want with a little configuration work. The Panels
Everywhere module provides an interesting variation on this functionality,
unfortunately, at the time this was written, there was not yet any sign that it would
be updated for Drupal 7. Panels require the Chaos Tool Suite module.

Learn more: http://drupal.org/project/panels.

Semantic Views
This module extends the Views module functionality. The purpose of the module
is to simplify the theming of Views by making it easier to insert HTML markup for
your Views rows and fields. Instead of overriding row style templates for views, you
can specify the HTML elements and classes from inside the Views UI. You must have
the Views module to use this module.

To learn more, visit http://drupal.org/project/semanticviews.

Useful Extensions for Themers

[228]

Skinr
The Skinr module is drawing a fair amount of attention these days. The module sets
out to allow a themer to define a set of reusable CSS styles and to then make those
available throughout the Drupal UI. The idea is exciting and holds a tremendous
amount of promise for helping rationalize and create manageable CSS structures in
the complex world of Drupal stylesheets. Themes do have to be modified slightly to be
Skinr compatible, making it more difficult to retrofit Skinr into an existing site (though
not impossible by any stretch of the imagination). An increasing number of themes are
being made available in Skinr compatible format and as a community begins to grow
around the extension we are seeing not only more themes but also more "skins," that
is, bundles of reusable style definitions. The module was still under development for
Drupal 7 at the time of writing so full evaluation was not possible.

Learn more: http://drupal.org/project/skinr.

Style Guide
The Style Guide module does just exactly what the name implies—it produces a
visual reference page that lets you check the styling for your theme. Once enabled,
a quick visit to the Theme Manager shows a new link next to each theme: Style
Guide. Click the link to see a page of sample text showing all the most common
page elements and HTML styles compiled in one place, as seen in the following
screenshot. A great time-saver and a fast way to check your work, and spot
inconsistencies and conflicts in your CSS styling.

Chapter 10

[229]

Download the Style Guide module at http://drupal.org/project/styleguide.

Useful Extensions for Themers

[230]

Sweaver
Sweaver is intended to make themes editable by anyone. With Sweaver installed, the
user has an easy-to-use graphical interface inside their browser that allows them to
completely change their theme without knowing CSS. You can modify fonts, colors,
sizes, and element positions. Once you achieve the look you like, you can save your
changes. The following screenshot shows Sweaver in action:

While this module is certainly not for the hardcore themers in the crowd, it does
open up Drupal theme customization—at least at the CSS level—to those with little
or no coding skills. Sweaver requires Chaos Tool Suite.

Visit the Sweaver project to learn more: http://drupal.org/project/sweaver.

Chapter 10

[231]

Taxonomy Theme
Taxonomy Theme is a simpler and more limited frontend for the ThemeKey
functionality, explained next. Taxonomy Theme is focused on providing the ability
to change the theme of a given node based on the taxonomy term or vocabulary.
Additionally, you can designate themes by path or by views if you are using the
Views module. You will need to install ThemeKey to use this module.

Visit the project page at http://drupal.org/project/taxonomy_theme.

ThemeKey
The ThemeKey module is an advanced theme switcher that allows you to run
multiple themes on your site and to automatically switch between them based on
criteria. This not only provides an alternative to relying on multiple page templates
and the theme layer, but also perhaps more importantly, lets you designate specific
themes to specific types of devices or for older browsers. You can also use it to
provide a splash page for your site, or set up promotional landing pages. Moreover,
if you have a live site and you want to put a new theme on it, ThemeKey gives you
the means to test the new theme on the live site without having to expose the work in
progress to visitors.

Download the module from http://drupal.org/project/themekey.

Views
The Views module enhances your control over the listing of content items (nodes).
With views you can create custom lists that contain the content you want, sorted in
the manner you want. Views makes it easy to make blog-site type lists of the most
recent articles, most recent comments, top posts in a category, most popular posts,
and so on. Essentially a smart query builder, Views is a very powerful module that
enables you to really open up your content display in a wide variety of manners.
Additionally, it can also be used to generate reports, create summaries, and group
and display images.

Views require the Chaos Tool Suite, discussed earlier in this chapter.

Learn more: http://drupal.org/project/views.

Useful Extensions for Themers

[232]

Webform
The Webform module provides you with enhanced form building capabilities. It
enables you to produce complex and advanced forms directly from within the admin
interface. Once installed it adds a new content type, which can then be customized
to display the fields, controls, and widget you require. The forms support Mollom,
CAPTCHA, and form validation.

Once published, submissions of the form are collected inside the system and can
also be e-mailed to one or more persons. The data collected in the system can then
be displayed and browsed from within the admin interface.

Visit the project page to learn more: http://drupal.org/project/webform.

Third-party software
In addition to the wonderful world of Drupal modules, there are third-party
software tools that you should consider. Three of the four items on this list are
browser plugins. While your preference in browser is entirely your own, all three
of the browser plugins are Firefox compatible:

•	 Drush
•	 Firebug
•	 Web Developer Extension
•	 YSlow

Drush
Drush is a command-line shell and scripting interface for Drupal. The utility can
greatly speed your development time—if you are comfortable working with a
command-line tool. Though there is a Drush project page on the Drupal.org website,
it is not a Drupal module. Drush is a third-party project.

Drush provides tools to execute cron, clear caches, and query the database. Among
the many things Drush does well is the rapid installation of modules and themes
from the Drupal.org site. You can literally install things with just a few key strokes.
If you know what you want, you can grab it and install it in no time at all. Migrating
an entire Drupal installation is similarly fast and easy. It's a huge time saver and well
worth the effort it takes to get over any dread you may experience at the site of a
command line. Visit the Drush home page to learn more at http://drush.ws.

The Drush Project page at Drupal.org also has more information: http://drupal.
org/project/drush.

Chapter 10

[233]

Firebug
Firebug is a wonderfully useful tool for web developers. As an add-on to the Firefox
browser, it stays visible and can be accessed by right-clicking on any object on the
screen to allow you to view the code and learn about the styling and attributes.
With Firebug you can edit the CSS you see on the screen and monitor and debug the
HTML and JavaScript live on the page.

Grab your copy at https://addons.mozilla.org/en-US/firefox/addon/
firebug/.

Web Developer Extension
The Web Developer Extension is very similar to Firebug but with a few extra tools
thrown into the mix, such as the ability to re-size your browser window to preset
sizes. Though it seems people use both, many people prefer one over the other.

Grab your copy at https://addons.mozilla.org/en-US/firefox/.

YSlow
YSlow is a site performance assessment tool. It is focused on helping you identify
how a site performs and where bottlenecks may be. In addition to providing
you with a window into how the page loads, it also provides suggestions for
improvements. YSlow is a Firefox add-on, but it also integrates with Firebug.

You can get the Firefox YSlow add-on here: https://addons.mozilla.org/en-us/
firefox/addon/yslow.

Summary
This chapter provides a list of various modules and third-party software tools that
can be used to improve your theming experience. The Drupal modules listed cover
a wide variety of functionality, from simple utilities to complex GUI-driven theming
interfaces. Additional modules like Views and Panels cross over from theming into
site building and provide you with fantastic tools for controlling the organization
and presentation of output on the page. The third-party software tools are
dominated by a list of add-ons for the Firefox browser, but also include the powerful
Drush command-line shell and scripting interface for Drupal.

There are plenty of other modules out there and as this was written in the early days
of Drupal 7, there will certainly be more appearing. Consider this list a starting point
for your explorations.

Identifying Templates,
Stylesheets, and Themable

Functions
The output of the Drupal system is subject to formatting via three primary elements:
templates, stylesheets, and themable functions. These various elements are scattered
throughout the Drupal distribution and may not, at first glance, be obvious.
Accordingly, one of the most important keys to the success of your theming efforts
is the ability to identify and locate the elements that impact the presentation layer.
In this chapter, we'll take you on a guided tour of all the system's various templates,
stylesheets, and themable functions, as a precursor to learning how to intercept and
override these elements in later chapters.

If a module is not listed here, there are no distinct themable elements
associated with the module.

A guide to Theming Elements
With the large assortment of templates, stylesheets, and themable functions
available to you in the default Drupal distribution, finding exactly what you need
can sometimes be a bit of a challenge. In an effort to simplify the process of isolating
relevant theming elements, we present in the pages that follow a list of the elements
organized relative to the functionality they affect.

Identifying Templates, Stylesheets, and Themable Functions

[236]

Common Theme System functions
The theme.inc file controls the Drupal theme system. In addition to initializing
and loading the theme system, the file contains a number of themable functions that
relate specifically to various key elements in Drupal. The functions can be found in
two files: includes/theme.inc and includes/theme.maintenance.inc.

Here is a table of the themable functions and a description of each one:

Function Path Description
theme_breadcrumb includes/theme.inc Handles the breadcrumb trail.
theme_disable includes/theme.inc Disables a list of themes.
theme_enable includes/theme.inc Enables a list of themes.
theme_feed_icon	 includes/theme.inc Enables a feed icon.
theme_get_registry includes/theme.inc Gets the theme registry.
theme_get_setting includes/theme.inc Retrieves a setting for a theme.
theme_get_
suggestions

includes/theme.inc Generates an array of
suggestions from path
arguments.

theme_html_tag includes/theme.inc Returns HTML for a tag with
attributes.

theme_image includes/theme.inc Themes an image.
theme_indentation includes/theme.inc Provides a div for standardizing

indentation.
theme_item_list includes/theme.inc Returns a themed list of items.
theme_link includes/theme.inc Returns HTML for a link.
theme_links includes/theme.inc Returns HTML for a list of links.
theme_mark includes/theme.inc Returns a themed marker for

content (for example, new,
updated).

theme_more_help_link includes/theme.inc Produces the more help link.
theme_more_link includes/theme.inc Produces the more link seen in

blocks.
theme_progress_bar includes/theme.inc Displays the percentage

complete progress bar.
theme_render_
template

includes/theme.inc Renders a system default
template.

theme_status_
messages

includes/theme.inc Formats status and error
messages.

theme_table includes/theme.inc Formats a table.

Appendix

[237]

Function Path Description
theme_tablesort_
indicator

includes/theme.inc Produces the sort icon.

theme_username includes/theme.inc Formats the username.

Theming the Aggregator module
The Aggregator module provides a variety of functions related to the aggregation
and display of syndicated content feeds (for example, RSS, RDF, and Atom).

Default templates
Theming the Aggregator module is made easier in Drupal 7 through the addition of
several dedicated template files:

• aggregator-feed-source.tpl.php

• aggregator-item.tpl.php

• aggregator-summary-item.tpl.php

• aggregator-summary-items.tpl.php

• aggregator-wrapper.tpl.php

The default templates are located at modules/aggregator/.

aggregator-feed-source.tpl.php
Provides a template for formatting the source of a feed. When a user is browsing the
feed, they will see the output above the feed listings. The available variables include:

Variable Description
$last_checked When the feed was last checked (locally).
$source_
description

The description text – from the source of the feed.

$source_icon This is the feed's icon – from the source of the feed.
$source_image The image associated with the feed – from the source of the

feed.
$source_url The URL to the source of the feed.

Identifying Templates, Stylesheets, and Themable Functions

[238]

aggregator-item.tpl.php
Formats an individual feed item. The available variables include:

Variable Description
$categories Categories assigned to the feed.
$content The content of the individual feed item.
$feed_title The title of the feed item – from the source of the feed.
$feed_url The URL of the feed item – from the source of the feed.
$source_date The date of the item – from the source of the feed.
$source_title The title of the provider of the feed – from the source of the feed.
$source_url The URL to the source of the feed.

aggregator-summary-item.tpl.php
Themes a linked feed item for summaries. The available variables include:

Variable Description
$feed_age The age of the remote feed.
$feed_title The title of the feed item – from the source of the feed.
$feed_url The URL of the feed item – from the source of the feed.
$source_title The title of the provider of the feed – from the source of the feed.
$source_url The URL to the source of the feed.

aggregator-summary-items.tpl.php
Themes a presentation of feeds as list items. The available variables include:

Variable Description
$summary_list The unordered list of feed items.
$source_url The URL to the local source (or category).
$title The title of the feed (or category).

aggregator-wrapper.tpl.php
Wraps aggregator content. The available variables include:

Variable Description
$content The entire aggregator contents.
$page Pagination links.

Appendix

[239]

Default stylesheets
Two stylesheets are dedicated to the formatting of the comments. Both are located at
/modules/aggregator.

File Description
aggregator.css Affects the RSS/Newsfeed Aggregator Module and its

contents.
aggregator-rtl.css A stylesheet that is used when the site employs right-to-left

text orientation.

Themable functions
There are a number of themable functions that relate to the aggregator. The functions
can be found in two files: modules/aggregator/aggregator.module and modules/
aggregator/aggregator.pages.inc.

Function Path Description
theme_aggregator_
block_item

modules/aggregator/
aggregator.module

Formats an individual feed item
displayed in a block.

theme_aggregator_
catagorize_items

modules/aggregator/
aggregator.pages.inc

Returns HTML for the
aggregator page list form for
assigning categories.

theme_aggregator_
page_opml

modules/aggregator/
aggregator.pages.inc

Allows you to theme the output
of the OPML feed.

theme_aggregator_
page_rss

modules/aggregator/
aggregator.pages.inc

Allows you to theme the output
of the RSS feed.

Theming the Block module
The Block module provides the mechanism for managing the blocks on the page.

Default templates
The system includes only two template files dedicated to blocks:

•	 block.tpl.php

•	 block-admin-display-form.tpl.php

The block.tpl.php template can be found at modules/system/.

The block-admin-display-form.tpl.php template can be found at
modules/block/.

Identifying Templates, Stylesheets, and Themable Functions

[240]

block.tpl.php
This is the key template for formatting blocks. The available variables include:

Variable Description
$block->delta The numeric ID associated with the module.
$block_html_id A valid HTML ID.
$block->module The module that generated the block.
$block->region The region that contains the block.
$block->subject The block title.
$block_id ID unique to the block in the region.
$block_zebra Provides an "odd/even" marker for the block. Alternates for each

block used within a region.
$classes String of classes that can be used to add contextual CSS styling.
$classes_array An array of HTML class attributes. This is a helper variable and is

flattened into a string within the variable $classes.
$content The block content.
$id Similar to $block_id but not dependent upon the region.
$is_admin Returns True if user is an administrator.
$is_front Returns True if user is viewing the front page.
$logged_in Returns True if user is logged in and authenticated.
$title_prefix An array of additional output intended to be displayed in front of

the main title tag.
$title_suffix An array of additional output intended to be displayed after the

main title tag.
$zebra Provides an "odd/even" marker for block but is not region

dependent.

block-admin-display-form.tpl.php
The template controls the admin system's block configuration interface. The available
variables include:

Variable Description
$block_listing An array of blocks keyed to region and delta.
$block_regions The title of the region of the block.
$form_submit The submit form button.

Appendix

[241]

Default stylesheets
There is one style sheet dedicated to the block module. It is located at: /modules/
block.

File Description
block.css Provides basic selectors for the styling of the block management

admin interface

Theming the Book functionality
The Book module creates a node that allows for the creation of hierarchically
organized groups of content items, united by a table of contents and common
pagination. The book module provides the functions that impact book content
and output.

Default templates
The default system includes four default template files dedicated to the book
functionality:

•	 book-all-books-block.tpl.php

•	 book-export-html.tpl.php

•	 book-navigation.tpl.php

•	 book-node-export-html.tpl.php

The templates can be found at modules/book/.

book-all-books-block.tpl.php
The template renders book outlines within a block. The available variables include:

Variable Description
$book_menus An array of the book outline. Presented as an unordered list.

Identifying Templates, Stylesheets, and Themable Functions

[242]

book-export-html.tpl.php
This template handles the printed version of the book outline. The available variables
include:

Variable Description
$base_url The URL to the home page.
$contents The nodes within the book outline.
$head The header tags.
$language The code indicating the language used.
$language_rtl Returns True when the site uses right-to-left text orientation.
$title The node's title.

book-navigation.tpl.php
Provides a template for formatting the navigation associated with a book node.
The available variables include:

Variable Description
$book_id The ID of the current book being viewed.
$book_title The title of the current book being viewed.
$book_url The URL of the current book being viewed.
$current_depth The current node's depth inside the outline.
$has_links Returns True whenever the parent, previous, or next function

has a value.
$next_title The title of the next node.
$next_url The URL of the next node.
$parent_title The title of the parent node.
$parent_url The URL of the parent node.
$prev_title The title of the previous node.
$prev_url The URL of the previous node.
$tree The children of the current node, rendered as an unordered list.

book-node-export-html.tpl.php
Provides a template for formatting a printer-friendly version of the node.
The available variables include:

Variable Description
$children All the child nodes associated.

Appendix

[243]

Variable Description
$content The content of the node.
$depth The current node's depth inside the outline.
$title The title of the node.

Default stylesheets
Two stylesheets are dedicated to the formatting of books. Both are located at
/modules/book.

File Description
book.css Controls the formatting of Book node content.
book-rtl.css A stylesheet that is used when the site employs right-to-left

text orientation.

Themable functions
There are only two themable functions that relate to books. The functions can be
found in two locations: modules/book/book.module and modules/book/book.
admin.inc.

Function Path Description
theme_book_admin_
table

modules/book/book.
admin.inc

Themes the book
administration page.

theme_book_title_link modules/book/book.
module

Provides the HTML output
for the link to the book title,
when it is used as a block
title.

Theming the Color module
The Color module provides the color change functionality seen in the theme
configuration manager of some themes.

Default templates
There are no default templates provided for the Color module.

Identifying Templates, Stylesheets, and Themable Functions

[244]

Default stylesheets
Two stylesheets are dedicated to the Color module. Both are located at /modules/
color.

File Description
color.css Controls the Color module used with some themes.

color-rtl.css A stylesheet that is used when the site employs right-to-left text
orientation.

Themable functions
There is only one themable function associated with the Color module:

Function Path Description
theme_color_scheme_form modules/color/color.

module
Controls formatting of
the Color Module form.

Theming the Comment functionality
The comment functionality allows users to add comments to published content.

Default templates
Theming the comments is Drupal 7 is handled by two dedicated template files:

•	 comment-wrapper.tpl.php

•	 comment.tpl.php

The default templates are located at modules/comment/.

comment-wrapper.tpl.php
This template is used to wrap all the comments. It is a container that controls the
overall formatting of the comment area. The available variables include:

Variable Description
$classes String of classes that can be used to provide contextual CSS

styling.
$classes-array Array of HTML class attributes, flattened into a string within

the variable $classes.
$content Handles all the comments for a particular page.

Appendix

[245]

Variable Description
$node The node object the comments are attached to.
$title_prefix An array of additional output that is displayed in front of the

main title tag.
$title_suffix An array of additional output that is displayed after the main

title tag.

comment.tpl.php
This is the primary template for controlling the appearance of a comment. The
available variables include:

Variable Description
$author The name of the author of the comment.
$changed Date and time comment was last changed.
$classes String of classes that can be used to provide contextual CSS

styling.
$comment The full comment object.
$content The main body of the comment.
$created Date and time comment was created.
$date The date and time the comment was posted.
$links The links associated with the functionality.
$new A marker that indicates a new comment.
$node The node object the comments are attached to.
$permalink Comment's permalink.
$picture The author's picture.
$signature The author's signature.
$status The status of the comment (that is, published, unpublished, and

so on).
$submitted Submitted by text with date and time.
$title The title of the comment, linked to the comment body.
$title_prefix An array of additional output that is displayed in front of the

main title tag.
$title_suffix An array of additional output that is displayed after the main

title tag.

Identifying Templates, Stylesheets, and Themable Functions

[246]

Default stylesheets
Two stylesheets are dedicated to the formatting of the comments. Both are located
at /modules/comment.

File Description
comment.css This is a very limited stylesheet which essentially only provides

the indent style for comments.
comment-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are only two themable functions that relate to the comment functionality.
The functions can be found at: modules/comment/comment.module.

Function Path Description
theme_comment_
block

modules/comment/comment.
module

Formats the list of recent
comments displayed within
a block.

theme_comment_
post_forbidden

modules/comment/comment.
module

Controls the you can't post
comments function.

Theming the Dashboard module
The Dashboard module handles the administration interface dashboard. As there is
no frontend output from this module, the theming options are limited.

Default templates
There are no default templates provided for the dashboard functionality.

Default stylesheets
There is one stylesheet dedicated to the formatting of the dashboard. It is located at
/modules/dashboard.

File Description
dashboard.css This stylesheet provides the styling of the dashboard.

Appendix

[247]

Themable functions
There are several themable functions associated with the Dashboard module. The
functions can be found at: modules/filter/dashboard.module.

Function Path Description
theme_dashboard modules/dashboard/dashboard.

module
Returns the HTML
for the entire
dashboard

theme_dashboard_
admin

modules/dashboard/dashboard.
module

The HTML for the
non-customizable
portion of the
dashboard.

theme_dashboard_
region

modules/dashboard/dashboard.
module

Styling for the
generic dashboard
region.

theme_dashboard_
disabled_blocks

modules/dashboard/dashboard.
module

Styling for a set of
disabled blocks.

theme_dashboard_
disabled_block

modules/dashboard/dashboard.
module

Styling for a disabled
block.

Theming the DBLog module
The DBLog records system events and allows administrators to monitor their system.
There is no frontend functionality associated with this module, hence the theming
options are limited.

Default templates
There are no default templates provided for the DBLog module.

Default stylesheets
Two stylesheets are dedicated to the formatting of the dblog. Both are located at
/modules/dblog.

File Description
dblog.css Provides the styles for the dblog admin interface.
dblog-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Identifying Templates, Stylesheets, and Themable Functions

[248]

Themable functions
There is only one themable function associated with the DBLog module.

Function Path Description
theme_dblog_message modules/dblog/dblog.

admin.inc
Returns the HTML for a log
message.

Theming the Field module
The Field module powers the custom field creation.

Default templates
There is one dedicated template file:

•	 * field.tpl.php

The default template is located at modules/field/theme.

field.tpl.php
This template is not actually used in the system, but is simply provided as a starting
point for customization. If needed, copy and place in the active theme directory. The
available variables include:

Variable Description
$classes String of classes that can be used to provide contextual CSS

styling.
$classes-array Array of HTML class attributes, flattened into a string within

the variable $classes.
$element['#field_
language']

The field language.

$element['#field_
name']

The field name.

$element['#field_
translatable']

Whether the field is translatable.

$element['#field_
type']

The field type.

$element['#label_
display']

The position of the label display.

Appendix

[249]

Variable Description
$element['#view_
mode']

View mode – full or teaser.

$field_name_css CSS compatible field name.
$field_type_css CSS compatible field type.
$items An array of field values.
$label The item label.
$label_hidden Whether the label is set to hidden.

Default stylesheets
Two stylesheets are dedicated to the formatting of the field. Both are located at
/modules/field/theme.

File Description
field.css A limited set of styles for the fields and the field form.
field-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are several themable functions associated with the Field module. The functions
can be found in three files: modules/field/field.module, modules/field/field.
form.inc, and modules/field/modules/options/options.module.

Function Path Description
theme_field modules/field/field.module The HTML for a

field.
theme_field_
multiple_value_form

modules/field/field.form.inc HTML for an
individual form
element.

theme_options_none modules/field/modules/
options/options.module

The HTML for the
label for values not
required.

Theming the Field UI module
The Field UI module gives an interface for managing custom fields. As there is no
frontend output from this module, the theming options are limited.

Identifying Templates, Stylesheets, and Themable Functions

[250]

Default templates
There are no dedicated templates file.

Default stylesheets
Two stylesheets are dedicated to the formatting of the field. Both are located at
/modules/field_ui.

File Description
field_ui.css Basic styling for the fields user interface.
field_ui-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There is one themable function associated with the Field UI module. The function
can be found at: modules/field_ui/field_ui.admin.inc.

Function Path Description
theme_field_ui_table modules/field_ui/field_

ui.admin.inc
The HTML for Field UI
overview tables.

Theming the File module
The File module provides the file field.

Default templates
There are no dedicated template files.

Default stylesheets
There is one stylesheet for the File module, located at /modules/file.

File Description
file.css Basic styling for the file element.

Appendix

[251]

Themable functions
There are several themable functions associated with the File module. The functions
can be found at: modules/file/file.field.inc.

Function Path Description
theme_file_
formatter_table

modules/file/file.
field.inc

Styling for the file
attachments table.

theme_file_icon modules/file/file.
field.inc

HTML for the icon
associated with the file type.

theme_file_link modules/file/file.
field.inc

HTML for a link to the file.

theme_file_managed_
file

modules/file/file.
field.inc

Styling for a managed file
element.

theme_file_upload_
help

modules/file/file.
field.inc

Styling for the help text for
the file uploader.

theme_file_widget modules/file/file.
field.inc

HTML for an individual file
upload widget.

theme_file_widget_
multiple

modules/file/file.
field.inc

HTML for a group of file
upload widgets.

Theming the Filter module
The Filter module allows administrators to specify the text input formats for the site
and filter out things that are potentially malicious or harmful. As there is no frontend
output from this module, the theming options are limited.

Default templates
There are no default templates provided for the filter functionality.

Default stylesheets
There is one stylesheet for the Filter module, located at /modules/filter.

File Description
filter.css Basic styling for the filter functionality.

Identifying Templates, Stylesheets, and Themable Functions

[252]

Themable functions
There are several themable functions associated with the Filter module. The
functions can be found in three files: modules/filter/filter.module, modules/
filter/filter.admin.inc, and modules/filter/filter.pages.inc.

Function Path Description
theme_filter_admin_
format_filter_order

modules/filter/filter.
admin.inc

HTML for a text format's
filter order form.

theme_filter_admin_
overview

modules/filter/filter.
admin.inc

Themes the admin overview
form for filters.

theme_filter_
guidelines

modules/filter/filter.
admin.inc

HTML for guidelines for a
text format.

theme_filter_tips modules/filter/filter.
pages.inc

Formats the filter tips.

theme_filter_tips_
more_info

modules/filter/filter.
module

Formats the filter tips more
info link.

theme_text_format_
wrapper

modules/filter/filter.
module

HTML for a text format
enabled form element.

Theming the Form functionality
Handles the various forms and their elements.

Default templates
There are no default templates provided for the form functionality.

Default stylesheets
There are no stylesheets dedicated to the form functionality.

Themable functions
There exists a large number of themable functions associated with forms. The
functions can be found at: includes/form.inc.

Function Path Description
theme_button includes/form.inc Formats a button.
theme_checkbox includes/form.inc Formats an individual

checkbox.
theme_checkboxes includes/form.inc Handles a set of checkboxes.

Appendix

[253]

Function Path Description
theme_container includes/form.inc The HTML to wrap the child

elements in a container.
theme_date includes/form.inc Formats the date selection

element.
theme_fieldset includes/form.inc Formats a group of form

items.
theme_file includes/form.inc Formats a file upload field.
theme_form includes/form.inc Provides an anonymous

<div> for forms to help
satisfy XHTML compliance
requirements.

theme_form_element includes/form.inc Returns a themed form
element, including the this
field is required message.

theme_form_element_
label

includes/form.inc HTML for a form element
label.

theme_form_
required_marker

includes/form.inc The HTML for the "required"
marker.

theme_hidden includes/form.inc Formats a hidden form field.
theme_image_button includes/form.inc Handles formatting of a form

image button.
theme_menu_link includes/form.inc Styling for a menu link and

submenu.
theme_menu_local_
action

includes/form.inc Formats a single local action
link.

theme_menu_local_
task

includes/form.inc Formats a single local task
link.

theme_menu_local_
tasks

includes/form.inc Formats the primary and
secondary local tasks.

theme_menu_tree includes/form.inc The HTML for a wrapper for
a menu sub-tree.

theme_password includes/form.inc Formats a password field.
theme_radio includes/form.inc Formats a radio button.
theme_radios includes/form.inc Formats a set of radio

buttons.
theme_select includes/form.inc Formats a drop-down menu

or scrolling selection box.
theme_submit includes/form.inc Formatting of the submit

button on a form.

Identifying Templates, Stylesheets, and Themable Functions

[254]

Function Path Description
theme_tableselect includes/form.inc HTML for a table with select

controls (that is, radio buttons
or checkboxes).

theme_textarea includes/form.inc Formats a text area within a
form.

theme_textfield includes/form.inc Formats a text field within a
form.

theme_vertical_tabs includes/form.inc Formats an element's children
as vertical tabs

Forms are discussed in greater length in Chapter 8, Dealing
with Forms.

Theming the Forum module
The Forum module handles the threaded discussion forums in Drupal. As this is a
fairly complex module with a significant role on the frontend of the system, it is not
surprising that there are a number of options available for theming this functionality.

Default templates
The default system includes five default template files dedicated to the forum
functionality:

•	 forum-icon.tpl.php

•	 forum-list.tpl.php

•	 forum-submitted.tpl.php

•	 forum-topic-list.tpl.php

•	 forums.tpl.php

The templates can be found at modules/forum/.

Appendix

[255]

forum-icon.tpl.php
Displays the icon associated with a post (for example, new, sticky, closed, and so on).
The available variables include:

Variable Description
$first_new Indicator showing that the item is the first topic with new posts.
$icon The icon to be displayed.
$new_posts Indicates whether the topic includes any new posts.

forum-list.tpl.php
Template to control the display of the list of forums and containers. The available
variables include:

Variable Description
$forum_id The ID of the current forum.
$forum->depth Depth of forum within content hierarchy.
$forum->description Forum's description
$forum->is_container TRUE if the forum containers other forums.
$forum->last_reply Last time a forum was posted or commented on.
$forum->link URL of the forum.
$forum->name Forum's name.
$forum->new_topics TRUE if the forum contains unread posts.
$forum->new_text Tells how many new posts.
$forum->new_url URL to unread posts.
$forum->num_posts Total number of posts in forum.
$forum->old_topics Count of posts already read.
$forum->zebra Even or odd string used for row classes.
$forums An array of forums and containers.

forum-submitted.tpl.php
This template controls the submitted by… information. The available variables
include:

Variable Description
$author The name of the author of the post.
$time When the post was made.
$topic The raw post data.

Identifying Templates, Stylesheets, and Themable Functions

[256]

forum-topic-list.tpl.php
This template displays a list of the forum topics. The available variables include:

Variable Description
$header The table header.
$pager The pagination elements.
$topic_id Numerical ID for current topic.
$topics An array of the topics.
$topic->comment_
count

The number of replies to the topic.

$topic->created When the topic was posted.
$topic->icon The icon.
$topic->last_
reply

When the topic was last replied to.

$topic->message The explanation and link for when a topic has been moved.
$topic->moved Flag to indicate a moved topic.
$topic->new_
replies

Flag to indicate unread comments.

$topic->new_text Text containing the count.
$topic->new_url URL to any unread replies.
$topic-
>timestamp

Raw timestamp for when topic was posted.

$topic->title The title of the topic.
$topic->zebra Even or odd string used for row classes.

forums.tpl.php
The template for the forum as a whole. The available variables include:

Variable Description
$forums The forums to be displayed.
$forums_defined A flag to indicate whether the forum has been defined.
$topics The topics to be displayed.

Appendix

[257]

Default stylesheets
Two stylesheets are dedicated to the formatting of the forums. Both are located at
/modules/forum.

File Description
forum.css Affects the contents of the forum module.
forum-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There is one additional themable function associated with the forum module:

Function Path Description
theme_forum_form modules/forum/forum.admin.inc Formats the Forum

form.

Theming the Help module
The Help module powers the context-sensitive help information, most often seen in
the admin interface.

Default templates
There are not default templates dedicated to the help functionality.

Default stylesheets
There are two stylesheets dedicated to the Help module. Both are located at
/modules/help.

File Description
help.css Contains two selectors to style the help function.
help-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are no additional themable functions associated with the help messages.

Identifying Templates, Stylesheets, and Themable Functions

[258]

Theming the Image functionality
The Image module assists with the image field and image management.

Default templates
There are no default templates dedicated to the image functionality.

Default stylesheets
There are three stylesheets dedicated to the image module. They are located at
/modules/image.

File Description
image.css Provides selectors for preview and the widget.
image-rtl.css A stylesheet that is used when the site employs right-to-left

text orientation.
image.admin.css Selectors for the admin view.

Themable functions
There are multiple themable functions related to the image functionality. They can be
found in three separate files:

Function Path Description
theme_image_anchor modules/image/

admin.inc
Formats the 3x3 grid of checkboxes
for image anchors.

theme_image_crop_
summary

modules/image/
admin.inc

HTML for summary of image crop
effect.

theme_image_
formatter

modules/image/
field.inc

HTML for the image field
formatter.

theme_image_
resize_summary

modules/image/
admin.inc

HTML for summary of image
resize effect.

theme_image_
rotate_summary

modules/image/
admin.inc

HTML for summary of image
rotate effect.

theme_image_scale_
summary

modules/image/
admin.inc

HTML for summary of image scale
effect.

theme_image_style modules/image/
image.module

Formats an image using a specific
style.

theme_image_style_
effects

modules/image/
admin.inc

HTML for the listing of the effects
in a specific image style.

Appendix

[259]

Function Path Description
theme_image_style_
list

modules/image/
admin.inc

Formats the page containing the
list of image styles.

theme_image_style_
preview

modules/image/
admin.inc

HTML for the preview of an image
style.

theme_image_widget modules/image/
field.inc

Formats the image field widget.

Theming the Locale functionality
The Locale module enables administrators to manage a site's interface languages.

Default templates
There are no default templates dedicated to the locale functionality.

Default stylesheets
There is only one stylesheet dedicated to the Locale module. It is located at /
modules/locale.

File Description
locale.css Provides a selector for the Locale module.

Themable functions
There are three themable functions related to the locale functionality:

Function Path Description
theme_locale_date_format_
form

includes/locale.
admin.inc

Formats the local date
format form.

theme_locale_languages_
configure_form

includes/locale.
admin.inc

HTML for a language
configuration page.

theme_locale_languages_
overview_form

includes/locale.
admin.inc

Themes the locale admin
manager form.

Theming the Menu functionality
The Menu module allows administrators to customize the site navigation menu.

Identifying Templates, Stylesheets, and Themable Functions

[260]

Default templates
There are no default templates dedicated to the Menu module.

Default stylesheets
There is only one stylesheet dedicated to the Menu module. It is located at
/modules/menu.

File Description
menu.css Provides three selectors for the menu module.

Themable functions
There are only two themable functions that relate to the Menu module.

Function Path Description
theme_menu_admin_
overview

module/menu/menu.admin.
inc

HTML for the menu title
and description for the
menu overview page.

theme_menu_overview_
form

module/menu/menu.admin.
inc

Themes the menu
overview form.

Theming the Node functionality
The Node module allows content to be submitted to the site, in various forms.

Default templates
The Node module provides a single dedicated template file, but it is key. This one
template provides many formatting options and handles all node content:

•	 modules/node/node.tpl.php

node.tpl.php
This template controls node display. This is a powerful and important template
and accordingly there are a number of variables associated with it:

Variable Description
$classes String of classes that can be used to provide contextual CSS styling.
$classes-array Array of HTML class attributes; flattened into a string within the

variable $classes.

Appendix

[261]

Variable Description
$comment The comment settings for the node.
$comment_count The number of comments tied to the node.
$content The node body and/or teaser.
$created The time the node was published.
$date The creation date of the node.
$display_
submitted

Whether submission information should be displayed.

$id The position of the node.
$is_admin Returns True when the current user is an administrator.
$is_front Returns True when the current page is the front page.
$logged_in Returns True when the current user is logged in and authenticated.
$name The username of the node's author.
$node The full node object.
$node_url The URL of the current node.
$page Flag indicating full page state.
$promote Flag indicating from page promotion state.
$readmore Flag indicating length of node exceeds teaser limit.
$status Flag indicating published state.
$sticky Flag indicating sticky state.
$submitted The submitted by… information.
$teaser Flag indicating the teaser state.
$title The node's title.
$title_prefix An array of additional output that is displayed before the main title

tag.
$title_suffix An array of additional output that is displayed after the main title

tag.
$type The node type (for example, story, blog, and so on).
$uid The user ID of the node's author.
$user_picture The picture of the node's author.
$view_mode The view of the node (that is, teaser, full).
$zebra Even or odd string used for row classes.

Identifying Templates, Stylesheets, and Themable Functions

[262]

Default stylesheets
Two stylesheets are dedicated to the node module. Both are located at: /modules/
node.

File Description
node.css Provides selectors for nodes.
node-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are a number of themable functions that relate to the node functionality. The
functions can be found in three files: modules/node/node.module, modules/node/
node.admin.inc, and modules/node/node.pages.inc.

Function Path Description
theme_node_add_list modules/node/node.

pages.inc
Displays the list of
available node types.

theme_node_admin_
overview

modules/node/content_
types.inc

Formats the node
administration overview.

theme_node_preview modules/node/node.
pages.inc

The node preview used
during content creation
and editing.

theme_node_recent_
block

modules/node/node.
module

Formats a list of recent
content.

theme_node_recent_
content

modules/node/node.
module

Formats the recent node
displayed in the recent
content block.

theme_node_search_
admin

modules/node/node.
module

Renders the admin node
search form.

Theming the OpenID module
The OpenID module enables authentication with the OpenID protocol.

Default templates
There are no default templates provided for the OpenID module.

Appendix

[263]

Default stylesheets
There is one stylesheet dedicated to the OpenID module, located at: /modules/
openid.

File Description
openid.css Provides selectors specific to authentication with the OpenID

system.
openid-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are no additional themable functions associated with the OpenID module.

Theming the Overlay module
The Overlay module provides the admin system overlay.

Default templates
There are no default templates provided for the Overlay module.

Default stylesheets
There are two stylesheets dedicated to the Overlay module, located at: /modules/
overlay.

File Description
overlay-child.css Selectors for the tabs, titles, and controls on the overlay

elements.
overlay-patent.css Basic overlay selectors.

Themable functions
There is only one themable function associated with the Overlay module.

Function Path Description
theme_overlay_
disable_message

modules/overlay/overlay.
module

Formats the message
containing instructions
for how to disable the
overlay.

Identifying Templates, Stylesheets, and Themable Functions

[264]

Theming the Poll module
Controls the formatting and display of the Poll module, including the voting forms
and the results.

Default templates
There are five dedicated templates for the poll functionality, covering block and page
output:

•	 poll-bar--block.tpl.php
•	 poll-bar.tpl.php
•	 poll-results--block.tpl.php
•	 poll-results.tpl.php
•	 poll-vote.tpl.php

The default templates are located at modules/poll/.

poll-bar--block.tpl.php
Provides a template for formatting the results bar of a single poll answer choice,
applicable when poll is in block position. The available variables include:

Variable Description
$percentage The percentage of total votes received by this answer choice.
$title The title of the poll.
$total_votes The number of votes cast for this answer choice.
$vote The current user's vote on the poll.
$voted Returns True if the user had voted on this poll.
$votes The total number of votes cast in the poll.

poll-bar.tpl.php
Displays the bar for a single choice in the poll. The available variables are the same
as those for the template poll-bar-block.tpl.php, above.

poll-results.tpl.php
Provides a template for the display of poll results. The available variables include:

Appendix

[265]

Variable Description
$cancel_form The form for a user to cancel their vote.
$links Links in the poll.
$nid The NID of the poll.
$raw_links Raw array of links in the poll.
$results The results of the poll.
$title The title of the poll.
$vote The current user's vote on the poll.
$votes The total number of votes cast in the poll.

poll-results--block.tpl.php
Provides a template for the display of poll results, applicable in block position.
The available variables are the same as those for poll-results.tpl.php.

poll-vote.tpl.php
Provides a template for the voting form for a poll. The available variables include:

Variable Description
$block Returns True if this is being displayed in a block.
$choice The radio buttons for voting on the choices in the poll.
$rest A catch-all to pick up anything else that may have been added

via hooks.
$title The title of the poll.
$vote The vote button.

Default stylesheets
Two stylesheets are dedicated to the formatting of the Poll module. Both are located
at /modules/poll.

File Description
poll.css Styling for Polls.
poll-rtl.css A stylesheet that is used when the site employs right-to-left

text orientation.

Identifying Templates, Stylesheets, and Themable Functions

[266]

Themable functions
There are no additional themable functions associated with the Poll module.

Theming the Profile module
The Profile module deals with the user profile pages.

Default templates
Drupal 7 provides three dedicated template files to assist with formatting the profile
functionality:

•	 profile-block.tpl.php
•	 profile-listing.tpl.php

•	 profile-wrapper.tpl.php

The default templates are located at modules/profile/.

profile-block.tpl.php
Handles the display of a user's profile within a block. The available variables include:

Variable Description
$field_title The title of the profile field.
$field_type The type of the profile field.
$field_value The value of the profile field.
$profile Array of all profile fields that have data.
$user_picture The image associated with the user.

profile-listing.tpl.php
Provides a template for the user information on the member listing page. The
available variables include:

Variable Description
$account User's account object.
$field_title The title of the profile field.
$field_type The type of the profile field.
$field_value The value of the profile field.
$name The name of the user.

Appendix

[267]

Variable Description
$user_picture The image associated with the user.
$profile Array of all profile fields that have data.

profile-wrapper.tpl.php
The template that is used for displaying a list of users. The available variables
include:

Variable Description
$content The user account profiles.
$current_field The field being browsed.

Default stylesheets
There is only one stylesheet dedicated to the profile functionality.

File Description
profile.css There are only three selectors here for the profile fields.

Themable functions
There is only one themable function that relates to the profile functionality.

Function Path Description
theme_profile_admin_
overview

modules/profile/profile.
admin.inc

Themes the profile field
overview.

Theming the Search module
The Search module powers the various search options for Drupal.

Default templates
There are three default templates for theming the search forms:

•	 search-block-form.tpl.php

•	 search-result.tpl.php

•	 search-results.tpl.php

The default templates are located at modules/search/.

Identifying Templates, Stylesheets, and Themable Functions

[268]

search-block-form.tpl.php
Provides a template for displaying a search form within a block. The available
variables include:

Variable Description
$search The complete search form.
$search_form An array of search form elements.
$search['hidden'] Handles hidden form elements.
$search['search_block_form'] Formats the text input area.
$search['submit'] Handles the form submit button.

search-result.tpl.php
This template renders a single search result. The available variables include:

Variable Description
$classes-array Array of HTML class attributes, flattened into a string within the

variable $classes.
$content_
attributes_array

An array of HTML attributes for the content.

$info String of all the meta information.
$info_split Contains the same data as $info, but it is split into an array.
$info_
split['comment']

Number of comments.

$info_
split['date']

Last update of the node.

$info_
split['type']

The node type.

$info_
split['upload']

Number of attachments.

$info_
split['user']

Author of the node.

$module The machine-readable name of the module being searched.
$title The title of the result.
$title_
attributes_array

Array of HTML attributes for the title.

$title_prefix An array of additional output that is displayed in front of the
main title tag.

$title_suffix An array of additional output that is displayed after the main title
tag.

Appendix

[269]

Variable Description
$type The type of search.
$url The URL of the result.

search-results.tpl.php
Provides a template for rendering the set of search results. The available variables
include:

Variable Description
$search_results All results.
$module The machine-readable name of the module.

Default stylesheets
Two stylesheets are dedicated to the formatting of the search functionality.
Both are located at /modules/search.

File Description
search.css Styling for the Search module.
search-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are no additional themable functions associated with the search function.

Theming the Shortcut module
The Shortcut module handles the shortcuts functionality associated with the toolbar
area of the admin system.

Default templates
There are no default templates provided for the Shortcut module.

Identifying Templates, Stylesheets, and Themable Functions

[270]

Default stylesheets

File Description
shortcut.admin.css Two basic selectors affecting shortcut display.
shortcut.css The primary stylesheet for formatting the shortcuts.

Themable functions
There is only one themable function associated with the Shortcut module.

Function Path Description
theme_shortcut_set_
customiza

modules/shortcut/
shortcut.admin.inc

Provides the formatting
for the shortcut set
customization form.

Theming the System module
The System module plays an important role in Drupal. The module provides
important functionality for generating pages as well as handling the various
configuration controls that help administrators modify the workings of the site.

Default templates
The System module contains some of the most important templates in Drupal.
The page and box templates are two key files for theming your site.

•	 html.tpl.php

•	 maintenance-page.tpl.php

•	 page.tpl.php

•	 region.tpl.php

The default templates are located at: modules/system/.

html.tpl.php
Provides a template for providing essential information included in all themes, for
example, the namespace.

Variable Description
$classes Classes used to provide contextual CSS styling.
$css An array of the CSS files for the current page.

Appendix

[271]

Variable Description
$grddl_profile A GRDDL profile to be used for extracting RDF data.
$head The markup for the <head> section.
$head_title The page title, for use in the TITLE tag.
$head_title_
array

Contains the parts used to generate the $head_title
variable.

$language The language the site is displayed in.
$page The rendered page content.
$page_bottom Closing markup from any modules that have altered

the page.
$page_top Markup from modules that have altered the page.
$rdf_namespaces The RDF namespace prefixes.
$scripts Loads the JavaScript files.
$styles To import all the CSS files for the page.

maintenance-page.tpl.php
Provides a template for formatting the "site under maintenance" page. The available
variables are the same as those applicable to the html.tpl.php and the page.tpl.
php files.

page.tpl.php
Provides an important template for controlling the output on a Drupal page.
The available variables include:

Variable Description
$action_links An array of actions local to the page.
$base_path The base path of the Drupal installation.
$breadcrumb The breadcrumb trail for the current page.
$directory The directory where the theme is located.
$feed_icons A string of the feed icons relevant to the page.
$front_page The URL of the front page.
$is_admin Returns True is user is an administrator.
$is_front Returns True if current page is the front page.
$logged_in Returns True if user is logged in and authenticated.
$logo The path to the logo image.
$main_menu An array of the main menu links.
$messages The status and error messages.

Identifying Templates, Stylesheets, and Themable Functions

[272]

Variable Description
$node The node object.
$page['content'] A region, in this case, the main content area.
$page['footer'] A region, in this case, the footer region.
$page['header'] A region, in this case, the header region.
$page['help'] A region, in this case, the region that displays the help

messages.
$page['highlighted'] A region, in this case, the highlighted content region.
$page['sidebar_
first']

A region, in this case, the first sidebar.

$page['sidebar_
second']

A region, in this case, the second sidebar.

$secondary_menu An array containing the secondary menu links.
$site_name The name of the site, as defined in the admin system.
$site_slogan The site slogan, as defined in the admin system.
$tabs The tabs linking to sub-pages (for example, edit).
$title The page title.
$title_prefix An array of additional output that is displayed in front of the

main title tag.
$title_suffix An array of additional output that is displayed after the main

title tag.

region.tpl.php
Provides a template for creating a box around items. The available variables include:

Variable Description
$classes Classes used to provide contextual CSS styling.
$classes-array Array of HTML class attributes, flattened into a string within

the variable $classes.
$content The content for the region (typically blocks).
$is_admin Returns True when the current user is the admin user.
$is_front Returns True when the current page is the front page.
$logged_in Returns True when the current user is logged in and

authenticated.
$region The name of the region variable.

Appendix

[273]

Default stylesheets
There are a large number of stylesheets associated with the System module, however,
the primary styling of the key templates discussed above is typically managed from
within the styles.css file located in the theme directory. The following stylesheets
are located at: modules/system.

File Description
system.admin.css Contains the styles for the administration pages.
system.admin-rtl.
css

A stylesheet that is used when the site employs right-to-left text
orientation.

system.base.css The Drupal system's theme agnostic styles.
system.base-rtl.
css

A stylesheet that is used when the site employs right-to-left text
orientation.

system.
maintenance.css

The styles for the maintenance page.

system-menus.css Covers a wide variety of common styles, and also includes
menus, tabs, and progress bars.

system-menus-rtl.
css

A stylesheet that is used when the site employs right-to-left text
orientation.

system.messages.
css

Styling for the system messages.

system.theme.css Basic styling for common markup.
system.theme-rtl.
css

A stylesheet that is used when the site employs right-to-left text
orientation.

Themable functions
There are a number of themable functions that relate to the System module.
The functions can be found in two files: modules/system/system.module and
modules/system/system.admin.inc.

Function Path Description
theme_admin_block modules/system/system.

admin.inc
Handles the admin
system block display.

theme_admin_block_
content

modules/system/system.
admin.inc

Formats the contents
of the admin block.

theme_admin_page modules/system/system.
admin.inc

Formats the
administration page.

theme_confirm_form modules/system/system.
module

Formats the
confirmation form.

Identifying Templates, Stylesheets, and Themable Functions

[274]

Function Path Description
theme_exposed_filters modules/system/system.

module
HTML for the
exposed filters form.

theme_status_report modules/system/system.
admin.inc

Themes the admin
system's status report
page.

theme_system_admin_
index

modules/system/system.
admin.inc

Formats the output of
the admin dashboard
page.

theme_system_compact modules/system/system.
module

Formats the link to
show or hide the help
descriptions.

theme_system_date_time_
settings

modules/system/system.
admin.inc

Formats the date
setting form.

theme_system_modules_
fieldset

modules/system/system.
admin.inc

HTML for the
modules form.

theme_system_modules_
incompatible

modules/system/system.
admin.inc

The HTML for the
message warning
of incompatible
modules.

theme_system_modules_
uninstall

modules/system/system.
admin.inc

Formats the table
containing the
uninstalled modules.

theme_system_powered_by modules/system/system.
module

Format the Powered
by Drupal text.

theme_system_settings_
form

modules/system/system.
module

The HTML for the
system settings form.

theme_system_themes_
page

modules/system/system.
admin.inc

HTML for the Theme
Manager page.

Theming the Taxonomy module
The Taxonomy module enables the organization of content into categories,
according to a hierarchical vocabulary.

Default Template
The Taxonomy module contains only one dedicated template.

•	 taxonomy-term.tpl.php

Appendix

[275]

taxonomy-term.tpl.php
Provides a template for creating a box around items. The available variables include:

Variable Description
$classes Classes used to provide contextual CSS styling.
$classes-array Array of HTML class attributes, flattened into a string within the

variable $classes.
$content An array of the content of the term.
$id Position of a term.
$is_admin Returns True when the current user is the admin user.
$is_front Returns True when the current page is the front page.
$logged_in Returns True when the current user is logged in and authenticated.
$name The name of the term.
$page Flag indicating full page state.
$term The full term object.
$term_url The URL of the term.
$view_mode The view mode (teaser, full, and so on).
$zebra Provides an "odd/even" marker useful for styling.

Default stylesheets
There is one stylesheet dedicated to the Taxonomy module; it is located at:
modules/taxonomy.

Variable Description
taxonomy.css Provides four selectors for the taxonomy module.

Themable functions
There are no unique themable functions in the Taxonomy module.

Theming the Toolbar module
The Toolbar module provides the admin system's toolbar functionality.

Default templates
There is no default template provided for the Toolbar module.

Identifying Templates, Stylesheets, and Themable Functions

[276]

Default stylesheets
There is one stylesheet dedicated to the Toolbar module; it is located at:
modules/toolbar.

File Description
toolbar.css Provides the selectors for theming the toolbar.

Themable functions
There are no themable functions dedicated to the Toolbar module.

Theming the Tracker module
The Tracker module enables the tracking of recent posts from users.

Default templates
There is no default template provided for the Tracker module.

Default stylesheets
There is one stylesheet dedicated to the Tracker module; it is located at: modules/
tracker.

File Description
tracker.css Provides two selectors for theming the tracker table.

Themable functions
There are no themable functions dedicated to the Tracker module.

Theming the Update module
The Update module checks for available updates to the Drupal core and modules
and notifies the administrator if any are available.

Default templates
There are no default templates dedicated to the update functionality.

Appendix

[277]

Default stylesheets
Two stylesheets are dedicated to the formatting of the update functionality.
Both are located at /modules/update.

File Description
update.css Numerous selectors for the update module interface in the

admin system.
update-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are two themable functions associated with the update functionality.
The functions can be found at: modules/update/update.report.inc, modules/
update/update.module, and at modules/update/update.manager.inc.

Function Path Description
theme_update_
last_check

modules/update/update.module The HTML for the
last time the system
checked for updates.

theme_update_
manager_update_
form

modules/update/update.manager.
inc

Formats the first
page in the update
manager wizard
(select projects).

theme_update_
report

modules/update/update.report.
inc

Formats the project
status report.

theme_status_
label

modules/update/update.report.
inc

Formats the label to
display the update
status.

theme_update_
version

modules/update/update.report.
inc

Formats the version
display.

Theming the User module
Enables the user registration and login system.

Identifying Templates, Stylesheets, and Themable Functions

[278]

Default templates
Theming the user pages is made easier in Drupal 7 through the addition of four
dedicated template files:

•	 user-picture.tpl.php

•	 user-profile-category.tpl.php

•	 user-profile-item.tpl.php

•	 user-profile.tpl.php

The default templates are located at: modules/user/.

user-picture.tpl.php
Handles the presentation of the image associated with the user's account.
The available variables include:

Variable Description
$account An array of the account information.
$user_picture The image set by the user for the account.

user-profile-category.tpl.php
Provides a template for formatting the presentation of user profiles in category view.
The available variables include:

Variable Description
$attributes The HTML attributes.
$profile_items All the items for the group.
$title The category title for the group.

user-profile-item.tpl.php
Handles the presentation of the user profile data. Loops through to present each
item. The available variables include:

Variable Description
$attributes The HTML attributes.
$title The field title for the profile item.
$value The value for the profile item.

Appendix

[279]

user-profile.tpl.php
Provides a template for presenting all the user data. The available variable:

Variable Description
$user_profile All of the user's profile data.

Default stylesheets
Two stylesheets are dedicated to the formatting of the user data. Both are located at
/modules/user.

File Description
user.css Styles for the User module and Profile module, includes styles for

user administration.
user-rtl.css A stylesheet that is used when the site employs right-to-left text

orientation.

Themable functions
There are a number of themable functions that relate to the user functionality. The
functions can be found in two files: modules/user/user.module and modules/
user/user.admin.inc.

Function Path Description
theme_user_admin_
permissions

modules/user/user.
admin.inc

Themes the permissions
manager.

theme_user_admin_
roles

modules/user/user.
admin.inc

Handles the new role
form.

theme_user_list modules/user/user.
module

Produces a list of users.

theme_user_
permission_
description

modules/user/user.
admin.inc

Formats individual
permission description.

theme_user_signature modules/user/user.
module

Handles the output of
the user's signature.

Index
Symbols
$body_classes 161
$classes 161
$is_front 158
$layout 161
@font-your-face module

about 223
project site 223

.info file 73

.mobi Loader module
about 224
project site 224

A
Adaptivetheme

about 59, 127
URL 59, 127

additional themes
Adaptivetheme 59
automatic installation 60, 61
Basic theme 59
Framework theme 60
Fusion theme 60
installing 60
manual installation 61-64
searching 55-58
Sky theme 60
uninstalling 64

Administration Forms 179, 180
Administration Menu module 221
Administration Menu Toolbar 221
admin theme

changing 149
combo box 150

designating 149
multiple page templates, using 151

Adobe Browser Lab 201
aggregator-feed-source.tpl.php 237
aggregator-item.tpl.php

about 238
variables 238

Aggregator module
about 44
default stylesheets 239
default templates 237
themable functions 239
theming 237

aggregator-summary-items.tpl.php
about 238
variables 238

aggregator-summary-item.tpl.php
about 238
variables 238

aggregator-wrapper.tpl.php
about 238
variables 238

automatic installation, additional theme
about 60
steps 60

B
Bartik theme

about 18, 24, 80, 82
advantages 24
default template files, overriding 101-103
verrides, handling 100
themable functions, overriding 103

Bartik theme templates
comment.tpl.php 122

[282]

comment-wrapper.tpl.php 122
maintenance-page.tpl.php 122
node.tpl.php 122
page.tpl.php 122

base theme
selecting 114

Basic theme
about 59
URL 59

block-admin-display-form.tpl.php template
about 240
location 239
variables 240

Block module
about 44
default stylesheets 241
default templates 239
theming 239

Blocks Manager
about 46, 48
block, assigning to region 49
individual blocks, configuring 49, 51
using 49

block.tpl.php template
about 158, 240
location 239

Blog module 44
bluewater.info 139
book-all-books-block.tpl.php template 241
book-export-html.tpl.php template

about 242
variables 242

Book module
about 44
default templates 241
themable functions 243
theming 241

book-navigation.tpl.php template
about 242
variables 242

book-node-export-html.tpl.php template
about 242
variables 242

Browsershots 201
browser-specific stylesheets

creating 164

C
CAPTCHA 232
Chaos Tool Suite module

about 222
CSS Tools 222

coldfusion.css file 135
Colorbox module

about 222
project site 222

Color module
about 42, 44
default stylesheets 244
default templates 243
themable function 244
theming 243
URL 42

Comment Form 178
comment_form() function 178
Comment Form, templates

comment.tpl.php 178
comment-wrapper.tpl.php 178

Comment module
about 44
default stylesheets 246
default templates 244
styling 207
themable functions 246
theming 244

comment.tpl.php template
about 178, 245
variables 245

comment-wrapper.tpl.php 178
comment-wrapper.tpl.php template 244
Conditional Comments 164
Conditional Stylesheets 164
Conditional Stylesheets module 164, 222
Contact Form 173
Contact module 44
contact_site_page() function 173
Content translation module 44
Contextual links module 44
core template

overriding 122
cross-browser compatibility

assessing 201
maintaining 200

[283]

CrossBrowserTesting 201
CSS

customizing 121
CSS Tools

reference link 222

D
Dashboard module

about 44
default stylesheets 246
default templates 246
themable functions 247
theming 246

Database logging module 44
DBLog module

default stylesheets 247
default templates 247
themable function 248
theming 247

default CSS
core stylesheets, overriding 92
default styling, overriding 90-92
overriding 88, 89

default Drupal themes
about 23
Bartik 24
Garland 26
Stark 28

default forms
about 168
Administration Forms 179
Comment Form 178
contact form 173
Poll module Forms 177
Search Forms 174
user forms 168

default form templates
overriding 187

default page groupings
page--aggregator.tpl.php 155
page--blog.tpl.php 155
page--book.tpl.php 155
page--contact.tpl.php 155
page--forum.tpl.php 155
page--poll.tpl.php 155
page--user.tpl.php 155

default stylesheet, Locale module
locale.css 259
location 259

default stylesheets, Drupal 87
default stylesheets, Aggregator module

about 239
aggregator.css 239
aggregator-rtl.css 239

default stylesheets, Block module
about 241
block.css 241
location 241

default stylesheets, Book module
about 243
book.css 243
book-rtl.css 243
location 243

default stylesheets, Color module
about 244
color.css 244
color-rtl.css 244
location 244

default stylesheets, Comment module
about 246
comment.css 246
comment-rtl.css 246
location 246

default stylesheets, Dashboard module
dashboard.css 246
location 246

default stylesheets, DBLog module
about 247
dblog.css 247
dblog-rtl.css 247
location 247

default stylesheets, Field module
field.css 249
field-rtl.css 249
location 249

default stylesheets, Field UI module
field_ui.css 250
field_ui-rtl.css 250
location 250

default stylesheets, File module
file.css 250
location 250

[284]

default stylesheets, Filter module
filter.css 251
location 251

default stylesheets, Forum module
about 257
forum.css 257
forum-rtl.css 257
location 257

default stylesheets, Help module
about 257
help.css 257
help-rtl.css 257

default stylesheets, Image module
about 258
image.admin.css 258
image.css 258
image-rtl.css 258
location 258

default stylesheets, Menu module
menu.css 260

default stylesheets, Node module
location 262
node.css 262
node-rtl.css 262

default stylesheets, OpenID module
location 263
openid.css 263
openid-rtl.css 263

default stylesheets, Overlay module
location 263
overlay-child.css 263
overlay-patent.css 263

default stylesheets, Poll module
about 265
location 265
poll.css 265
poll-rtl.css 265

default stylesheets, Profile module
profile.css 267

default stylesheets, Search module
location 269
search.css 269
search-rtl.css 269

default stylesheets, Shortcut module
shortcut.admin.css 270
shortcut.css 270

default stylesheets, System module
location 273
system.admin.css 273
system.admin-rtl.css 273
system.base.css 273
system.base-rtl.css 273
system.maintenance.css 273
system-menus.css 273
system-menus-rtl.css 273
system.messages.css 273
system.theme.css 273
system.theme-rtl.css 273

default stylesheets, Toolbar module
location 276
toolbar.css 276

default stylesheets, Tracker module
location 276
tracker.css 276

default stylesheets, Update module
location 277
update.css 277
update-rtl.css 277

default stylesheets, User module
location 279
user.css 279
user-rtl.css 279

default stylesheet, Taxonomy module
location 275
taxonomy.css 275

default template, Field module
field.tpl.php template 248

default template files, Bartik theme
comment.tpl.php 101
Comment-wrapper.tpl.php 101
maintenance-page.tpl.php 101
node.tpl.php 101
overriding 101-103

default templates
about 86
modifying 122

default templates, Aggregator module
about 237
aggregator-feed-source.tpl.php 237
aggregator-item.tpl.php 238
aggregator-summary-items.tpl.php 238
aggregator-summary-item.tpl.php 238
aggregator-wrapper.tpl.php 238

[285]

location 237
default templates, Block module

about 239
block-admin-display-form.tpl.php 240
block.tpl.php 240

default templates, Book module
about 241
book-all-books-block.tpl.php 241
book-export-html.tpl.php 242
book-navigation.tpl.php 242
book-node-export-html.tpl.php 242

default templates, Color module 243
default templates, Comment module

about 244
comment.tpl.php 245
comment-wrapper.tpl.php 244

default templates, Forum module
about 254
forum-icon.tpl.php 255
forum-list.tpl.php 255
forums.tpl.php 256
forum-submitted.tpl.php 255
forum-topic-list.tpl.php 256
location 254

default templates, Node module
location 260
node.tpl.php 260

default templates, Poll module
poll-bar--block.tpl.php 264
poll-bar.tpl.php 264
poll-results--block.tpl.php 265
poll-results.tpl.php 264
poll-vote.tpl.php 265

default templates, Profile module
location 266
profile-block.tpl.php 266
profile-listing.tpl.php 266
profile-wrapper.tpl.php 267

default templates, Search module
location 267
search-block-form.tpl.php 268
search-results.tpl.php 269
search-result.tpl.php 268

default templates, System module
html.tpl.php 270
location 270
maintenance-page.tpl.php 271

page.tpl.php 271
region.tpl.php 272

default templates, Taxonomy Module
taxonomy-term.tpl.php 275

default templates, User module
about 278
location 278
user-picture.tpl.php 278
user-profile-category.tpl.php 278
user-profile-item.tpl.php 278
user-profile.tpl.php 279

Devel module
about 110, 222
downloading 110
installing 159
project site 223

doctype definition (DTD) 200
Download Extensions

URL 12
Drupal

accessible themes, creating 201
additional themes, searching 55-58
admin theme, designating 149
Blocks Manager 46
contributed modules 43
default CSS, overriding 88, 89
default forms 168
default style sheets 87
default styling, overriding 91, 92
default templates 86
dynamic CSS styling, creating 161
dynamic theming 149
existing theme, customizing 109
forms, dealing with 167
forms, working 180-183
Forum module 42
intercept 10
Module Manager 43
override 10
templates, overriding 94-97
template variables, intercepting 105, 106
template variables, overriding 105, 106
template variables, working with 104, 105
themable functions 88
themable functions, overriding 97, 98
themable functions, transforming

to templates 98-100

[286]

theme engine files 30
theme files 30
Theme Registry 94
themes, uninstalling 64
third party software 232
URL 12

Drupal 7
Bartik theme 80
dynamic classes 161
modules 44
Seven theme 79

Drupal 7 Theme Guide
URL 12

Drupal blocks
creating 19
regions 19

Drupal distro 85
Drupal modules

about 219
Administration Menu 221
Chaos Tool Suite 222
Colorbox module 222
Conditional Stylesheets 222
Devel 222
@font-your-face 223
Frontpage 223
HTML5 Tools 223
Mobile Theme 224
.mobi Loader 224
Nice Menus 224
Noggin module 226
Organic Groups 226
Panels 227
Semantic Views 227
Skinr 228
Style Guide 228
Sweaver 230
Taxonomy Theme 231
ThemeKey 231
Views 231
Webform 232

Drupal online resources 12
drupal_render() 181
drupal_render_children() 181
drupal_render_children() function 193
Drupal system

configuring 9, 10

Drupal theme
about 8, 11
base theme, selecting 114
basic principles 215
build, planning 125, 126
configuring 36
default 23
evaluating 13-15
issues, troubleshooting 216, 217
modifications, planning 112, 113
multiple templates, using 8
new theme, creating 125
output 15-19
site administrators view 20
sub-themes 11
troubleshooting 215

Drupal theme accessibility basics
about 203
accessible forms, creating 203
alternatives, providing to applets

and plug-ins 204
capitalization, using 205
elements, ordering on screen logically 204
hover states and visited states,

providing 204
JavaScript, not relying on 204
jump links, using 205
semantic structure, supporting 205
suitable color scheme, using 205
system fonts, using 205
tables, avoiding 203
text, resizing 204

Drupal Theme Development Forum
URL 12

Drupal theming
challenges, overcoming 199
cross-browser compatibility,

maintaining 200
Panels, theming 212, 214
template suggestions, creating

for fields 206
template suggestions, creating for specific

nodes 206
Views, theming 209-212
workspace, setting up 109-112

Drupal Theming on IRC
URL 12

[287]

Drush
about 232
features 232
URL 232

dynamic classes
.front 161
.logged-in 162
.node-type-[name of type] 162
.no-sidebar 161
.not-front 162
.not-logged-in 162
.one-sidebar 161
.page-[page type] 162
.sidebar-left 161
.sidebar-right 161
.two-sidebars 161
about 161

dynamic CSS styling
$classes, employing for conditional styling

161, 162
browser-specific stylesheets, creating 164
creating 161
dynamic selectors, creating for nodes 163
new variables, adding to $classes 163

dynamic selectors
creating, for nodes 163

F
Field module

about 44, 248
default stylesheets 249
default templates 248
themable functions 249

Field SQL storage module 44
field.tpl.php template

about 248
location 248
variables 248

Field UI module
about 45
default stylesheets 250
themable function 250
theming 249

File module
default stylesheets 250
themable functions 251

theming 250
Filter module 45

about 45
default stylesheets 251
themable functions 252
theming 251

Firebug
about 233
URL 233

Firefox add-on
URL 110

form_alter 193
Form functionality

themable functions 252
theming 252

form_render function 181
forms

block, modifying 184
CSS styling, working with 184
dedicated templates, creating 191, 192
default form templates, overriding 187
modifying 183
modifying, with custom modules 193-197
page, modifying 184
templates for blocks, overriding 185, 186
templates for pages and nodes,

overriding 185
theme functions, overriding 188-191
working 180-183

forum-icon.tpl.php template
about 255
variables 255

forum-list.tpl.php template
about 255
variables 255

Forum module
about 42, 45
default stylesheets 257
default templates 254
enabling 42
styling 208
themable function 257
theming 254

forums.tpl.php
about 256
variables 256

[288]

forum-submitted.tpl.php
about 255
variables 255

forum-topic-list.tpl.php
about 256
variables 256

Framework theme
about 60
URL 60

Frontpage module
about 223
project site 223

Fusion theme
about 60, 127
base theme directory 134
theming resources 134
URL 60, 127

Fusion theme documentation
URL 133

G
Garland theme

about 26
features 26

Genesis
about 128
URL 128

global theme configuration
about 37, 38
logo image settings 38
shortcut icon settings 40
toggle display setting 38

GPanels 128

H
Help module

default stylesheets 257
theming 257

hook_css_alter() function 92
hook_form_alter() function 193
HTML5 Tools module

about 223
project site 223

html.tpl.php file 30, 161
html.tpl.php template 270

I
Image module 45

about 45
default stylesheets 258
themable functions 258
theming 258

individual blocks
configuring 49, 51
region settings 51
visiblity settings 51

J
JeanB theme

configuring 120
creating 115
CSS, adapting 121
customizing 119
default template, modifying 122
entire stylesheet, overriding 121
new selector, adding 121
single selector, overriding 121

K
key modules

comment module, styling 207
Forum module, styling 208
Poll module, styling 208
Profile module, styling 209
Search module, styling 209
suggestions 207

key PHPTemplate theme files
.info file 72
page.tpl.php file 70, 72

L
List module 45
local development server

setting up 111
Locale module 45

about 45
default stylesheet 259
themable functions 259
theming 259

Login Block Form 169

[289]

Login Forms
about 168
Login Block Form 169
Login Page Form 169

Login Page Form 169

M
maintenance page

theming 214, 215
maintenance-page.tpl.php template

about 271
variables 271

manual installation, additional theme
about 61
steps 62, 63

Menu module
about 45
default stylesheets 260
themable functions 260
theming 259

Mobile Theme module
about 224
project site 224

modifications, Drupal theme
planning 112, 113

module 42
Module Manager

about 43
module, enabling 44

modules, Drupal 7
Aggregator 44
Block 44
Blog 44
Book 44
Color 44
Comment 44
Contact 44
Content translation 44
Contextual links 44
Dashboard 44
Database logging 44
Field 44
Field SQL storage 44
Field UI 45
File 45
Filter 45

Forum 45
Help 45
Image 45
List 45
Locale 45
Menu 45
Node 45
Number 45
OpenID 45
Options 45
Overlay 45
Path 45
PHP filter 45
Poll 45
RDF 45
Search 45
Shortcut 45
Statistics 45
Syslog 45
System 45
Taxonomy 46
Testing 46
Text 46
Toolbar 46
Tracker 46
Trigger 46
Update manager 46
User 46

Mollom 232
multiple page templates

different template, using for group
of pages 155

specific template, assigning to specific
page 156

specific template, designating to specific
page 157

unique homepage template, creating 153
using 151, 152

N
new theme

approaches 125
creating 125
creating, by sub-theming 126, 127
creating, without sub-theming 137
styling 133

[290]

new theme, creating by sub-theming
base theme, selecting 127-129
site, configuring 133
sub-theme, creating 129-131
theme, styling 133

new theme, creating without sub-theming
.info file, populating 139-142
about 137
build, planning 138
new directory, creating 138
new empty file, creating 139
optional elements, adding 146
packaging 147
page.tpl.php file, customizing 144, 145
style.css file 145

new theme customization
CSS, working with 135
template.php file, working with 136, 137
templates. modifying 136

new theme, styling
about 133
customizing 135

Nice Menus module
about 224
project site 225

Node module
about 45
default stylesheets 262
default templates 260
themable functions 262
theming 260

node.tpl.php template
about 260
variables 260

Noggin module
about 226
project site 226

Number module 45

O
online resources, Drupal 12
OpenID module

about 45
default stylesheets 263
theming 262

Options module 45

Organic Groups module
about 226, 227
project site 227

Overlay module 45
about 45
default stylesheets 263
themable function 263
theming 263

P
page elements

associating, with front page 157
blocks, styling dynamically 158, 159
styling, by region 158
theming dynamically 157

page.tpl.php file 70, 74-77
page.tpl.php template

about 271
variables 271

page--user.tpl.php 155
Panels module

about 227
project site 227
theming 212, 214

Path module 45
PHP filter module 45
PHPTAL

about 82
limitations 82, 83

PHPTemplate
about 67
overview 67

PHPTemplate-specific files 32
PHPTemplate theme

working 68-72
PHPTemplate theme engine files

.info 32
about 32
page.tpl.php 32
style.css 32

poll-bar--block.tpl.php template 264
poll-bar.tpl.php template 264
Poll Block Form 178
poll_block_view() function 178
poll_form() function 178

[291]

Poll module
about 45
default stylesheets 265
default templates 264
styling 208
theming 264

Poll module Forms
about 177
Poll Block Form 178
Poll Page Form 178

Poll Page Form 178
poll-vote.tpl.php template

about 265
variables 265

profile-block.tpl.php template 266
profile-listing.tpl.php template

about 266
variables 266

Profile module
default stylesheets 267
default templates 266
styling 209
themable function 267
theming 266

profile-wrapper.tpl.php template
about 267
variables 267

R
RDF module 45
region.tpl.php file 158
region.tpl.php template

variables 272
Request Password Form 170

S
SASS 59
search-block-form.tpl.php template 268
search_form() function 176
Search Forms

about 174
Advanced Search Form 175
Block Search Form 175
Page Search Form 175
search results page 176

Search module
about 45
default stylesheets 269
default templates 267
styling 209
theming 267

search results page 176
search-results.tpl.php template

about 269
variables 269

search-result.tpl.php template
about 268
variables 268

search_view() function 176
Semantic Views module

about 227
project site 227

Seven theme 20, 79
Shortcut module

about 45
themable function 270
theming 269

site administration, Drupal theme
about 20
Overlay module 22
Seven 20
toolbar 20, 21

Skinr module
about 59, 228
project site 228

Sky theme
about 60
URL 60

Smarty
about 83
download link 83

specific template
assigning, to specific page 156
designating, to specific page 157

Stark theme
about 28
features 28

Statistics module 45
Style Guide module

about 228
project site 229

[292]

sub-theme
.info file, updating 116-118
configuring 120
copy of base theme, creating 114
creating 114
creating, in new directory 115
CSS, adapting 121
customizing 119
files, deleting 115
stylesheet, creating 115
theme name, updating 115

sub-theme, for creating new theme
advantages 126
disadvantages 126

sub-theming 112
Sweaver module 230
Syslog module 45
System module

about 45
default stylesheets 273
default templates 270
themable functions 273
theming 270

T
TAL 82
Taxonomy Module

about 46
default stylesheet 275
default templates 274
theming 274

taxonomy-term.tpl.php template
about 275
variables 275

Taxonomy Theme module
about 231
project site 231

template.php file 97
template_process() function 104
templates

overriding 93-97
template suggestions

about 152
creating, for fields 206
creating, for specific nodes 206

template variables
intercepting 105, 106
new variables, making available 106
overriding 105, 106
working with 104

Testing module 46
Text module 46
themable function

overriding 123
themable function, Color module

theme_color_scheme_form 244
themable function, DBLog module

theme_dblog_message 248
themable function, Field UI module

location 250
theme_field_ui_table 250

themable function, Forum module
theme_forum_form 257

themable function, Overlay module
theme_overlay_disable_message 263

themable function, Profile module
theme_profile_admin_overview 267

themable functions
about 88
converting, to templates 98-100
overriding 93, 97, 98

themable functions, Aggregator module
about 239
location 239
theme_aggregator_block_item 239
theme_aggregator_catagorize_items 239
theme_aggregator_page_opml 239
theme_aggregator_page_rss 239

themable functions, Bartik theme
overriding 103
theme_menu_tree() 103

themable functions, Book module
about 243
theme_book_admin_table 243
theme_book_title_link 243

themable functions, Comment module
about 246
location 246
theme_comment_block 246
theme_comment_post_forbidden 246

themable functions, Dashboard module
location 247

[293]

theme_dashboard 247
theme_dashboard_admin 247
theme_dashboard_disabled_block 247
theme_dashboard_disabled_blocks 247
theme_dashboard_region 247

themable functions, Field module
location 249
theme_field 249
theme_field_multiple_value_form 249
theme_options_none 249

themable functions, File module
location 251
theme_file_formatter_table 251
theme_file_icon 251
theme_file_link 251
theme_file_managed_file 251
theme_file_upload_help 251
theme_file_widget 251
theme_file_widget_multiple 251

themable functions, Filter module
location 252
theme_filter_admin_format_filter_order 252
theme_filter_admin_overview 252
theme_filter_guidelines 252
theme_filter_tips 252
theme_filter_tips_more_info 252
theme_text_format_wrapper 252

themable functions, Form functionality
location 252
theme_button 252
theme_checkbox 252
theme_checkboxes 252
theme_container 253
theme_date 253
theme_fieldset 253
theme_file 253
theme_form 253
theme_form_element 253
theme_form_element_label 253
theme_form_required_marker 253
theme_hidden 253
theme_image_button 253
theme_menu_link 253
theme_menu_local_action 253
theme_menu_local_task 253
theme_menu_local_tasks 253
theme_menu_tree 253

theme_password 253
theme_radio 253
theme_radios 253
theme_select 253
theme_submit 253
theme_tableselect 254
theme_textarea 254
theme_textfield 254
theme_vertical_tabs 254

themable function, Shortcut module
theme_shortcut_set_customiza 270

themable functions, Image module
theme_image_anchor 258
theme_image_crop_summary 258
theme_image_formatter 258
theme_image_resize_summary 258
theme_image_rotate_summary 258
theme_image_scale_summary 258
theme_image_style 258
theme_image_style_effects 25
theme_image_style_list 259
theme_image_style_preview 259
theme_image_widget 259

themable functions, Locale module
theme_locale_date_format_form 259
theme_locale_languages_configure_form

259
theme_locale_languages_overview_form

259
themable functions, Menu module

theme_menu_admin_overview 260
theme_menu_overview_form 260

themable functions, Node module
location 262
theme_node_add_list 262
theme_node_admin_overview 262
theme_node_preview 262
theme_node_recent_block 262
theme_node_recent_content 262
theme_node_search_admin 262

themable functions, System module
location 273
theme_admin_block 273
theme_admin_block_content 273
theme_admin_page 273
theme_confirm_form 273
theme_exposed_filters 274

[294]

theme_status_report 274
theme_system_admin_index 274
theme_system_compact 274
theme_system_date_time_settings 274
theme_system_modules_fieldset 274
theme_system_modules_incompatible 274
theme_system_modules_uninstall 274
theme_system_powered_by 274
theme_system_settings_form 274
theme_system_themes_page 274

themable functions, Update module
about 277
location 277
theme_status_label 277
theme_update_last_check 277
theme_update_manager_update_form 277
theme_update_report 277
theme_update_version 277

themable functions , User module
theme_user_admin_permissions 279
theme_user_admin_roles 279
theme_user_list 279
theme_user_permission_description 279
theme_user_signature 279

theme 11
theme_breadcrumb function 99, 236
theme_comment_view function 99
theme configuration settings, Drupal

labout 36
global theme configuration 37
theme-specific configuration 40

Theme developer
about 110
downloading 110

Theme Development Group on Drupal
Groups

URL 12
theme_disable function 236
theme_enable function 236
theme engine 13
theme_feed_icon function 236
theme files

about 30
html.tpl.php file 30

theme_functionname() 98
theme_get_registry function 236
theme_get_setting function 236

theme_get_suggestions function 236
theme_html_tag function 236
theme_image function 236
theme_indentation function 236
theme_item_list function 236
ThemeKey module

about 231
project site 231

theme_link function 236
theme_links function 236
Theme Manager 36
theme_mark function 236
theme_menu_tree() function 123
theme_more_help_link function 236
theme_more_link function 236
theme_progress_bar function 236
Theme Registry

about 94
updating 94

theme_render_template function 236
theme-specific configuration

about 40, 41
color scheme controls 42

theme_status_messages function 236
theme system functions

about 236
theme_breadcrumb 236
theme_disable 236
theme_enable 236
theme_feed_icon 236
theme_get_registry 236
theme_get_setting 236
theme_get_suggestions 236
theme_html_tag 236
theme_image 236
theme_indentation 236
theme_item_list 236
theme_link 236
theme_links 236
theme_mark 236
theme_more_help_link 236
theme_more_link 236
theme_progress_bar 236
theme_render_template 236
theme_status_messages 236
theme_table 236
theme_tablesort_indicator 237

[295]

theme_username 237
theme_table function 236
theme_tablesort_indicator function 237
theme_username function 237
theming elements

guide 235
theming resources, Fusion theme 134
third party software

about 232
Drush 232
Firebug 233
Web Developer Extension 233
YSlow 233

Toolbar module
about 46
default stylesheets 276
theming 275

Total Validator 202
Tracker module

about 46
default stylesheets 276
theming 276

Trigger module 46

U
unique homepage template

creating 153, 154
Update manager module 46
Update module

default stylesheets 277
themable functions 277
theming 276

user_edit_form() 173
user forms

about 168
Login Forms 168
Request Password Form 170
User Profile Editing Form 171
User Registration Form 170

user_login() 169
user_login_block() function 169, 183
User module

about 46
default stylesheets 279
default templates 278
themable functions 279

theming 277
user_pass() function 171
user-picture.tpl.php template 278
user-profile-category.tpl.php template

about 278
variables 278

User Profile Editing Form 171, 173
user-profile-item.tpl.php template

about 278
variables 278

user-profile.tpl.php template
$user_profile variable 279
about 279

user_register_form() function 170
User Registration Form 170

V
validation tools

about 202
Total Validator 202
Web Developer 202

variables, aggregator-feed-source.tpl.php
$last_checked 237
$source_description 237
$source_icon 237
$source_image 237
$source_url 237

variables, aggregator-item.tpl.php
$categories 238
$content 238
$feed_title 238
$feed_url 238
$source_date 238
$source_title 238
$source_url 238

variables, aggregator-summary-items.tpl.
php

$source_url 238
$summary_list 238
$title 238

variables, aggregator-summary-item.tpl.php
$feed_age 238
$feed_title 238
$feed_url 238
$source_title 238
$source_url 238

[296]

variables, aggregator-wrapper.tpl.php
$content 238
$page 238

variables, block-admin-display-form.tpl.
php template

$block_listing 240
$block_regions 240
$form_submit 240

variables, block.tpl.php template
$block->delta 240
$block_html_id 240
$block_id 240
$block->module 240
$block->region 240
$block->subject 240
$block_zebra 240
$classes 240
$classes_array 240
$content 240
$id 240
$is_admin 240
$is_front 240
$logged_in 240
$title_prefix 240
$title_suffix 240
$zebra 240

variables, book-all-books-block.tpl.php
template

$book_menus 241
variables, book-export-html.tpl.php tem-

plate
$base_url 242
$contents 242
$head 242
$language 242
$language_rtl 242
$title 242

variables, book-navigation.tpl.php template
$book_id 242
$book_title 242
$book_url 242
$current_depth 242
$has_links 242
$next_title 242
$next_url 242
$parent_title 242
$parent_url 242

$prev_title 242
$prev_url 242
$tree 242

variables, book-node-export-html.tpl.php
template

$children 242
$content 243
$depth 243
$title 243

variables, comment.tpl.php template
$author 245
$changed 245
$classes 245
$comment 245
$content 245
$created 245
$date 245
$links 245
$new 245
$node 245
$permalink 245
$picture 245
$signature 245
$status 245
$submitted 245
$title 245
$title_prefix 245
$title_suffix 245

variables, comment-wrapper.tpl.php tem-
plate

$classes 244
$classes-array 244
$content 244
$node 245
$title_prefix 245
$title_suffix 245

variables, field.tpl.php template
$classes 248
$classes-array 248
$element[*#field_language*] 248
$element[*#field_name*] 248
$element[*#field_translatable*] 248
$element[*#field_type*] 248
$element[*#label_display*] 248
$element[*#view_mode*] 249
$field_name_css 249
$field_type_css 249

[297]

$items 249
$label 249
$label_hidden 249

variables, forum-icon.tpl.php template
$first_new 255
$icon 255
$new_posts 255

variables, forum-list.tpl.php template
$forum->depth 255
$forum->description 255
$forum_id 255
$forum->is_container 255
$forum->last_reply 255
$forum->link 255
$forum->name 255
$forum->new_text 255
$forum->new_topics 255
$forum->new_url 255
$forum->num_posts 255
$forum->old_topics 255
$forums 255
$forum->zebra 255

variables, forums.tpl.php
$forums 256
$forums_defined 256
$topics 256

variables, forum-submitted.tpl.php
$author 255
$time 255
$topic 255

variables, forum-topic-list.tpl.php
$header 256
$pager 256
$topic->comment_count 256
$topic->created 256
$topic->icon 256
$topic_id 256
$topic->last_reply 256
$topic->message 256
$topic->moved 256
$topic->new_replies 256
$topic->new_text 256
$topic->new_url 256
$topics 256
$topic->timestamp 256
$topic->title 256
$topic->zebra 256

variables, html.tpl.php template
$classes 270
$css 270
$grddl_profile 271
$head 271
$head_title 271
$head_title_array 271
$language 271
$page 271
$page_bottom 271
$page_top 271
$rdf_namespaces 271
$scripts 271
$styles 271

variables, node.tpl.php template
$classes 260
$classes-array 260
$comment 261
$comment_count 261
$content 261
$created 261
$date 261
$display_submitted 261
$id 261
$is_admin 261
$is_front 261
$logged_in 261
$name 261
$node 261
$node_url 261
$page 261
$promote 261
$readmore 261
$status 261
$sticky 261
$submitted 261
$teaser 261
$title 261
$title_prefix 261
$title_suffix 261
$type 261
$uid 261
$user_picture 261
$view_mode 261
variables, node.tpl.php template$zebra 261

variables, page.tpl.php template
$action_links 271

[298]

$base_path 271
$breadcrumb 271
$directory 271
$feed_icons 271
$front_page 271
$is_admin 271
$is_front 271
$logged_in 271
$logo 271
$main_menu 271
$messages 271
$node 272
$page['content'] 272
$page['footer'] 272
$page['header'] 272
$page['help'] 272
$page['highlighted'] 272
$page['sidebar_first'] 272
$page['sidebar_second'] 272
$secondary_menu 272
$site_name 272
$site_slogan 272
$tabs 272
$title 272
$title_prefix 272
$title_suffix 272

variables, poll-bar--block.tpl.php template
$percentage 264
$title 264
$total_votes 264
$vote 264
$voted 264
$votes 264

variables, poll-vote.tpl.php template
$block 265
$choice 265
$rest 265
$title 265
$vote 265

variables, profile-block.tpl.php template
$field_title 266
$field_type 266
$field_value 266
$profile 266
$user_picture 266

variables, profile-listing.tpl.php template
$account 266

$field_title 266
$field_type 266
$field_value 266
$name 266
$profile 267
$user_picture 267

variables, profile-wrapper.tpl.php template
$content 267
$current_field 267

variables, region.tpl.php template
$classes 272
$classes-array 272
$content 272
$is_admin 272
$is_front 272
$logged_in 272
$region 272

variables, search-block-form.tpl.php
template

$search 268
$search_form 268
$search['hidden'] 268
$search['search_block_form'] 268
$search['submit'] 268

variables, search-results.tpl.php template
$module 269
$search_results 269

variables, search-result.tpl.php template
$classes-array 268
$content_attributes_array 268
$info 268
$info_split 268
$info_split['comment'] 268
$info_split['date'] 268
$info_split['type'] 268
$info_split['upload'] 268
$info_split['user'] 268
$module 268
$title 268
$title_attributes_array 268
$title_prefix 268
$title_suffix 268
$type 269
$url 269

variables, taxonomy-term.tpl.php template
$classes 275
$classes-array 275

[299]

$content 275
$id 275
$is_admin 275
$is_front 275
$logged_in 275
$name 275
$page 275
$term 275
$term_url 275
$view_mode 275
$zebra 275

variables, user-picture.tpl.php template
$account 278
$user_picture 278

variables, user-profile-category.tpl.php
template

$attributes 278
$profile_items 278
$title 278

variables, user-profile-item.tpl.php template
$attributes 278
$title 278
$value 278

Views module
Views moduleabout 231
Views moduleproject site 231
Views moduletheming 209, 210, 211, 212

visiblity settings, individual blocks
about 51
content types 52, 53
pages 51
roles 54
users 54

W
W3C 200
Web Accessibility Initiative (WAI)

about 201
URL 201

Web Content Accessibility Guidelines
(WCAG) 201

Web Developer
downloading 202

Web Developer Extension
about 110, 233
URL 233

Webform module
about 232
project site 232

Webform Module 197
workspace, for Drupal theming

setting up 109-112
WYSIWYG HTML/XML editor 82

X
XAMPP 111
XAMPP installation package

acquiring 111

Y
YSlow

about 233
URL 233

Z
Zen theme

about 56, 128
URL 128

Zope
URL 82

ZPT 82

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning the Basics of Drupal Theming
	The importance of themes in Drupal
	One template or many? It's up to you
	Get creative with configuration
	Intercept and override
	Sub-themes are your friends

	What is a theme?
	Official Drupal online resources

	What is a theme engine?
	The range and flexibility of Drupal themes
	The output of a Drupal theme
	The site administrator's view
	The default Drupal themes
	Bartik
	Garland
	Stark

	Theme files
	Summary

	Chapter 2: Working with the Default Configuration and Display Options
	Configuring a theme
	Global Theme Configuration
	Toggle Display
	Logo Image Settings
	Shortcut Icon Settings

	Theme-Specific Configuration

	Controlling module and block visibility
	Introducing the Module Manager
	Introducing the Blocks Manager
	Configuring individual blocks
	Region Settings
	Visibility Settings

	Finding additional themes
	Installing an additional theme
	Automatic installation
	Manual installation

	Uninstalling themes
	Summary

	Chapter 3: Understanding PHPTemplate Themes
	What is PHPTemplate?
	How does it all work?
	Key PHPTemplate theme files
	The role of the .info file
	The role of the page.tpl.php file
	Two contrasting examples
	A simple PHPTemplate theme–Seven
	A more complex PHPTemplate theme–Bartik

	Summary

	Chapter 4: Using Intercepts and Overrides
	Putting together the pieces
	Default templates
	Default stylesheets
	The themable functions

	Overriding the default CSS
	CSS overrides in action
	Overriding core stylesheets

	Overriding templates and themable
functions
	Various approaches to overriding the Default Styling
	Overriding templates
	Overriding functions
	Converting themable functions into dedicated templates

	Overrides in Action: A look at overrides in Bartik
	Overriding the default template files
	Overriding themable functions

	Working with template variables
	Intercepting and overriding variables
	Making new variables available

	Summary

	Chapter 5: Customizing an Existing Theme
	Setting up the workspace
	Planning the modifications
	Selecting a base theme
	Creating a new sub-theme
	Create a copy of the base theme
	Create the sub-theme in a new directory
	Delete the files you don't need
	Update the theme name throughout the
sub-theme
	Create a stylesheet for your sub-theme
	Update the sub-theme's .info file

	Customizing the sub-theme
	Configuring the theme
	Adapting the CSS
	Modifying a default template
	Overriding a themable function

	Summary

	Chapter 6: Creating a New Theme
	Planning the build
	Creating a new theme through
sub-theming
	Selecting a base theme
	Creating the sub-theme
	Configuring the site
	Styling the new theme
	Fusion's theming resources
	Customizing the styling

	Building a new theme without
sub-theming
	Planning the build
	Creating the necessary elements
	Populating the .info file
	Customizing the page.tpl.php file
	The style.css file
	Adding optional elements

	Packaging your theme

	Summary

	Chapter 7: Dynamic Theming
	Designating a separate Admin theme
	Using multiple page templates
	Creating a unique home page template
	Using a different template for a group of pages
	Assigning a specific template to a specific page
	Designating a specific template for a
specific user

	Dynamically theming page elements
	Associating elements with the front page
	Styling by region
	Dynamically styling blocks

	Creating dynamic CSS styling
	Employing $classes for conditional styling
	Adding new variables to $classes
	Creating dynamic selectors for nodes
	Creating browser-specific stylesheets

	Summary

	Chapter 8: Dealing with Forms
	The Default Forms
	The User Forms
	Login Form
	User Registration Form
	Request Password Form
	User Profile Editing Form

	Contact Form
	Search Forms
	Block Search Form
	Page Search Form
	Advanced Search Form
	Search results page

	Poll module Forms
	Poll Block Form
	Poll Page Form

	Comment Form
	Administration Forms

	How Forms work in Drupal
	Modifying forms
	Working with the CSS styling
	Modifying the page or block holding the form
	Overriding the templates for pages and nodes containing forms
	Overriding the templates for blocks containing forms

	Overriding the default form templates
	Overriding theme functions to control form elements
	Creating dedicated templates for forms
	Modifying forms with custom modules

	Summary

	Chapter 9: Overcoming Common Challenges in Drupal Theming
	Maintaining cross-browser compatibility
	Creating accessible themes
	Validation tools
	Drupal theme accessibility basics
	Avoiding tables
	Creating accessible forms
	Not relying on JavaScript
	Making sure your text resizes
	Ordering elements on the screen logically
	Providing hover states and visited states
	Providing alternatives to applets and plugins
	Supporting a semantic structure
	Using system fonts for your menus
	Using capitalization appropriately
	Using a suitable color scheme
	Using jump links

	Creating template suggestions for fields
	Creating template suggestions for specific nodes
	Suggestions for key modules
	Styling the Comment module
	Styling the Forum module
	Styling the Poll module
	Styling the Profile module
	Styling the Search module

	Theming Views
	Theming Panels
	Theming the maintenance page
	Troubleshooting your theme
	Basic principles
	Troubleshooting common problems

	Summary

	Chapter 10: Useful Extensions for Themers
	Drupal modules
	Administration Menu
	Chaos Tool Suite
	Colorbox
	Conditional Stylesheets
	Devel
	@font-your-face
	Frontpage
	HTML5 Tools
	.mobi Loader
	Mobile Theme
	Nice Menus
	Noggin
	Organic Groups
	Panels
	Semantic Views
	Skinr
	Style Guide
	Sweaver
	Taxonomy Theme
	ThemeKey
	Views
	Webform

	Third-party software
	Drush
	Firebug
	Web Developer Extension
	YSlow

	Summary

	Appendix: Identifying Templates, Stylesheets, and Themable Functions
	A guide to Theming Elements
	Common Theme System functions
	Theming the Aggregator module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Block module
	Default templates
	Default stylesheets

	Theming the Book functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Color module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Comment functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Dashboard module
	Default templates
	Default stylesheets
	Themable functions

	Theming the DBLog module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Field module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Field UI module
	Default templates
	Default stylesheets
	Themable functions

	Theming the File module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Filter module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Form functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Forum module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Help module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Image functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Locale functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Menu functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the Node functionality
	Default templates
	Default stylesheets
	Themable functions

	Theming the OpenID module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Overlay module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Poll module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Profile module
	Default Templates
	Default stylesheets
	Themable functions

	Theming the Search module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Shortcut module
	Default templates
	Default stylesheets
	Themable functions

	Theming the System module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Taxonomy module
	Default Template
	Default stylesheets
	Themable functions

	Theming the Toolbar module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Tracker module
	Default templates
	Default stylesheets
	Themable functions

	Theming the Update module
	Default templates
	Default stylesheets
	Themable functions

	Theming the User module
	Default templates
	Default stylesheets
	Themable functions

	Index

